
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 35, NO. 3, PP. 221-234- (1991) 

FORMAL HARDWARE DESCRIPTION USING GLASS1 

M. SEUTTER 

Dept. of Computer Science 
Faculty of Mathematics and Informatics 
University of Nijmegen, The Netherlands 

Received Aug. 29, 1990. 

Abstract 

The principle of systems semantics is discussed. The language Glass based upon this 
principle is described and its usage for hardware description. The implementation of 
the description environment for this language developed in Esprit project 881 will be 
presented. 

1 Introduction 

The aim of Esprit project 881, 'Forfun' (Formal description of arbitrary 
systems by means of functional languages), was a feasibility study of the 
implement ability of the principle of systems semantics (BOUTE). In the 
course of the project a system description language for digital and ana­
logue systems was designed called Glass (General language for systems 
semantics). Furthermore an implementation of a prototype user environ­
ment, called Glue (Glass user environment) supporting the language and 
the semantic functions expressing the various interpretations of the lan­
guage has been made. 

In Section 2 of this article we will discuss the principle of systems 
semantics. Section 3 will describe the language Glass and its usage in 
hardware design. In Section 4 we will look at the implementation of the 
environment and the set of semantic functions thus far developed. Finally 
we will draw some conclusions in the last Section. 

2 Systems Semantics 

VLSI design is a very complex activity. One deals with thousands of tran­
sistors, nets, pins, etc. One therefore would like to describe hardware 
formally and then verify such a design in an automated way. 

lResearch supported by CEe as Esprit project 881, 'Forfun' 



222 M. SEUTTER 

Hardware has many aspects such as behaviour, structure, reliability, 
etc. Within one aspect one might even discern several subaspects. (For in­
stance regarding behaviour: one may be interested in the static behaviour 
of a logic circuit, expressed by BooleaIJ. functions, or in the electric be­
haviour determined by the loading, etc.) 

Current hardware description languages often have just one 'a priori' 
semantics, describing only one aspect, so that several languages and de­
scriptions are necessary to describe a system in all of its aspects. Most of 
these languages are also deficient in that they describe a system in an algo­
rithmic way, whereas most systems are essentially not algorithmic. Such an 
algorithmic description of a system is only suitable for simulation, which 
again deals with just one aspect of the system. The non-algorithmic aspects 
must then be expressed in a different way (often in natural language ). 

In Esprit project 881, Forfun, we try to cope with these problems 
in the following way: we use only one language to describe formally the 
decomposition of a system into subsystems and their connectivity: Glass. 
Such a formal description may then be assigned a meaning by a semantic 
function. A semantic function is a function from the set of all legal Glass 
descriptions to a certain domain of interpretation. A description in Glass 
therefore has no 'a priori' meaning at all: it is merely a piece of text. You 
can only derive a meaning of it by applying a semantic function to it. So by 
applying several semantic functions to one description one may get several 
meanings of the described circuit, like structure, its cost, its behaviour, etc. 
In fact, you derive some kind of multi-view of the described system: 

Glass description 

struct behav cost 

Various domains of interpretation 

Consider for instance the following description of a dataselector: 
Def 

select E E x E x E => E; 

select (sel, a, b) = or (and (not s, a), and (s, b)); 

If we apply the semantic function struct to this definition we obtain its 
structural interpretation, represented by its schematic in Fig. 1. 



FORMAL HARDWARE DESCRIPTION USING GLASS 

2>-------i 

o >--~II-----I 

Fig. 1. Structural interpretation of select 

223 

Applying the semantic function cost to this description will yield the 
cost of that description according to some cost model. (Taking the number 
of gates in a description as model we would obtain 4). 

In the same way, if we apply the semantic function simplez (truth 
table semantics) to this description we would derive a function of type 
8 3 

-l- 8 describing its static (truth table) behaviour: 

(simplex select) (0,1,0) = 1 
(simplex select) (1,0,0) = 0 

Or, if we wish to have a more detailed view of the above description we ap­
ply the semantic function dtme (Discrete timing model using Eichelberger 
algebra) which then yields a function of type (AI -l- &)3 -l- AI -l- & (with 
& = {O, 1, x}) expressing (part of) its dynamic behaviour. 

Every semantic function should, if possible, be compositional, that 
is, the semantic function expresses the meaning of a composite system in 
terms of the meanings of the constituents. This of course means that the 
semantic function itself is based upon the meaning of certain primitive 
systems. These latter are called atoms in Glass. For each of the atoms the 
semantic function writer has to code the desired meaning into the semantic 
function. 



224 M. SE UTTER 

3 The Language Glass 

3.1 Basic Ideas 

Descriptions in Glass define systems in terms of subsystems and their con­
nectivity. Not all interconnections are of the same nature: systems may 
be coupled electrically (by wires), magnetically, pneumatically, optically 
(by glass fibers), etc. We will therefore use the term connection in a very 
general sense, not only for electric connection, but also for connection via 
magnetics, optics, etc. We will also use the word terminal in a general 
sense, being an interface between (sub) systems. Also two systems may be 
multiply connected: the interface between the two may be decomposed 
into sets of sub connections. A system description is therefore character­
ized not only by its decomposition, but also by its external interface. The 
specification of such an external interface is called the type of a system. 

Basic interconnections are introduced by means of so called basetype 
declarations, which serve to introduce a name for an elementary connection. 
In all of our eXaniples we will use only one baset"jpe E, indicating the type 
of the wire. 

Systems may be differentiated into three large classes namely the di­
rectional, the adirectional and the hybrid ones. In directional systems there 
is a clear flow of information from a certain set of terminals (often called in­
puts) to another set of terminals (outputs). Digital circuits typically belong 
to this class. In the adirectional systems such a clear flow of information is 
missing. Analogue circuits typically belong to this class. Of course hybrid 
systems (systems that are neither purely directional nor purely adirectional 
but more a kind of mixture of both) can also exist. 

This differentiation can be made for the interface of a system as well 
as for its decomposition. A system may well be directional for the outside 
world whereas it can be composed out of adirectional subsystems. In this 
article we will mainly focus on directional systems. However, the reader is 
warned that the language Glass is more general. 

3.2 Directional Systems 

Consider the following description, introducing some well known primitive 
components: 

Basetype E; 
Atom 



FORMAL HARDWARE DESCRIPTION USING GLASS 

not E E:::} E, 

and E E x E :::} E, 

nand E Ex E:::} E, 

or E E X E :::} E, 

xor E E X E => E; 

225 

The fat arrow':::}' in the type specifications denotes the directionality of 
the interface. In general U :::} V stands for the set of directional systems 
having terminals of type U as input and terminals of type V as output. The 
Cartesian product' x' indicates the bundling of terminals into compound 
ones. 

Let us introduce a composite system description: 

Def 

select E E X E X E :::} E; 

select (sel, a, b) = or {and (not s, a), and (s, b)); 

Composite system descriptions consist of two parts, namely the declaration 
of the external interface and its decomposition into subsystems. In this 
decomposition iuxtaposition denotes system application. Application of a 
system to a sub expression means the connection of output to input or if 
that sub expression is a name, connection of that terminal to an input. The 
angle brackets '(' and ')' are used to form tuples of terminals. These may 
be used in formal arguments as well as in expressions: 

Def 

halfadder E E X E :::} E X E; 

halfadder (x, y) = (xor{x, y), and (x, y)); 

In many systems feedback may be encountered. In the digital field feedback 
is used to build sequential circuits, synchronous and asynchronous ones. In 
the analogue domain, feedback is used for instance toreduce the distortion 
in amplifiers. 

In Glass feedback and also fanout (that is the connection of several 
inputs to one output) may be described by a where-clause, with which 
you may introduce local definitions. Consider for instance the following 
definition: 

Def 

SetOnce E E:::} E; 
>-~. 

SetOnce i = 0 where 0 = or (i, 0); endwhere; L ~ 
which has as structural interpretation: 



226 M. SEUTTER 

Another good example is the description of the reset-set-flipflop: 

Def 

RSFF E E2 => E2; 

RSFF (RI,SI) = (q,ql) 

where 

q = nand (SI, l); 

ql = nand (RI, q) 

endwhere; 

whose structural interpretation can be represented by this schematic: 

0>------1 

0----0 

An example of expressing fanout with the where construct is the following 
somewhat strange implementation of an exclusive or: 

Def 

my_xoT E E x E => E; 

my_xoT (x,y) nand (nand (b,x),nand (b,y)) 

where b = nand (x, y) endwhere; 

whose structural interpretation is represented by this schematic: 



FORMAL HARDWARE DESCRIPTION USING GLASS 227 

3.3 Adirectional and Hybrid Systems 

In adirectional systems there is no clear flow of information. Such a system 
may have terminals connecting it to the outside world but you cannot 
indicate any input or output. Think for instance of a resistor: it has two 
terminals to connect it with other components but current may flow into 
a terminal (and at the same time out of the other (Kirchhoff!)) and at the 
next moment of time the current through the resistor may be reversed. 

As all system definitions must contain a declaration we must be able 
to specify that a circuit is adirectional. With [U] we mean the set of all 
adirectional systems having terminals of type U. So a resistor has type 
[E X E]. Let us introduce some typical adirectional systems: 

Atom 
RE [E x El, 
C E [E x El; 

As there is no output in an adirectional system the right hand side of a 
composite system definition also gets another form. You decompose an 
adirectional system by making a set of all its constituents. We will call 
this set an appset. In an appset connectivity is indicated by using common 
variables. Because you do not want to let all local connections be visible 
to the outside, names are bound within the appset unless they are already 
bound outside the appset (as formal parameter of the system for instance). 

Def 
RCnet E [E x E x E]; 
RCnet (a, b, c) = 

{R (a, d), 
C (b, d), 
C (d, c)}; 

with the following structural interpretation: 

Of course, circuits exist that are only partially adirectional, that is, some of 
its terminals are adirectional, whereas others serve as inputs or as outputs. 



228 M. SEUTTER 

For this purpose it is possible to specify that several terminals of such a 
system are directional by specifying that directionality in the type of the 
system. With ?U is meant the type of an input terminal of type U, and !U 
stands for the type of an output terminal of type U. Consider for instance 
the declaration of an atomic monostable fiipfiop, which has one input, two 
terminals to connect it to an external timing capacitor, and one output: 

Atom 

Monoflop E [?E x E x E x !E]; 

As one might wish to combine such circuits with directional ones there 
must exist an equivalence between the types of directional systems and the 
types of systems that are adirectional but have only a directional interface. 
In Glass the type U => V is equivalent to the type [?Ux!V]. Thus E2 => E 
is equivalent to [? (E2) x !E]. With these concepts we can describe systems 
that are directional to the outside world but internally are decomposed 
in adirectional components. A nice example of this can be seen in the 
following description of an invertor in CM os technology: 

Atom 

/* gate, source, .drain */ N enh E [E x E x E], 

Penh E [E x E x E]; /* idem */ 
Atom 

Def 

Vdd E [E], 

Gnd E [E]; 

CMoslnvertor E E => E; 

CMoslnvertor (in,out) = 

{Penh (in,plus, out), 

N enh (in, gnd, out), 

Vddplus, 

Gnd gnd}; 

which has the following structural interpretation: 



FORMAL HARDWARE DESCRIPTION USING GLASS 229 

Remark how supplies can be introduced as atomic components having only 
one adirectional terminal. 

3.4 Macros 

One of the design issues of the language was that the language should 
support the description of regular structures, as they are often encountered 
in VLSI design. 

The language contains a macro expansion mechanism, with which you 
can describe regular systems. A macro describes only how to generate all 
the descriptions that make up such a regular circuit. When using Glass, 
the macro expander in the Glass 'describing environment' replaces all ap­
plications of macros by their expansions. Remark also that a macro does 
not have a meaning nor can a semantic function ascribe a meaning to it. 

With U -t V we denote the set of all functions with U as domain and 
V as codomain. The reader is warned that he should not confuse the two 
arrows -t and::::;.. The first expresses a function type, whereas the second 
expresses a system type. When reading type constructions containing both 
type constructors, the => has the higher precedence. 

Consider the next example: 

Atom 
divide.by_two E E => Ej 

Mac 
triple E E => E -t E => Ej 
triple A in = A (A (A in)); 



230 M. SEUTTER 

Def 
divide.1Jy_8 E E =? E; 
divide.1Jy_8 in = triple divide_by_two in; 

Macro expansion will lead to a cascade of three divide_by_two circuits. 
The language contains possibilities to introduce parametrized types, 

although that parameter is restricted to the domain of the integers. By 
writing Int :3 n in a type you introduce n as an integer type parameter, 
which may then be used to specify the sizes of the constituents in the rest 
of the type. Thus one may specify 

Int :3 n -+ En X En =? En. 

A macro of this type yields a system taking two n-tuples as input and 
yielding one n-tuple as output. 

In order to enable case distinction in an elegant way the language 
contains pattern matching facilities for macros. Macros may consist of 
several alternatives which are tried from top to bottom at expansion time. 
The first alternative whose formal arguments match the actual ones is then 
expanded. 

Using pattern matching we may now be able to specify an adder chain: 

Atom 

Mac 

Def 

adc E E x E x E =? E x E; 

nbitsadder E Int -+ En X En X E =? E X En; 

nbitsadder 0 ((), (), c} = (c, O); 
nbitsadder n (a : as, b : bs, Gin) = (cout, s : ss) 

where 
(v, s) = adc (a, b, Gin); 

(cout, ss) = nbitsadder (n 1) (as, bs, v}j 

endwhere; 

Fourbitsadder E E4 X E4 X E =? E X E 4j 

Fourbitsadder (as, bs, Gin) = nbitsadder 4 (as, bs, Gin). 

Calculation may be used to steer macro expansion. In fact Glass is a 
full functional language containing special syntax to describe systems and 
system types. 

However, constructs that are the result of macro expansion are re­
quired to be systems, or in other words, the resulting expressions after 
macro expansion must have a structural interpretation. The set of all Gla.ss 
descriptions resulting from macro expansion is called kernel Glass. 



FORMAL HARDW".RE DESCRIPTION USING GLASS 231 

3.5 Designing in Glass 

When designing systems in Glass one can discern several major design 
methodologies: top down, horizontal and vertical. 

With the top down methodology one refines a description stepwise 
from an abstract top level description to a more detailed low level descrip­
tion. One decomposes this top level system description into functional 
blocks, these functional blocks into logical building blocks which in their 
turn may be decomposed into systems built with gates. 

With the horizontal methodology we mean altering an existing de­
scription in such a way that only one aspect changes (decreasing cost, 
silicon area, power consumption, etc.) while keeping the other aspects (be­
haviour) the same. This methodology is typically used for optimization of 
the design. 

With the vertical methodology one refines a description by redefin­
ing the atomic components as compound ones using lower level atoms as 
building blocks. In this way one can inspect several aspects of a system at 
a much lower level (by appropriate semantic functions). One example of 
this is checking if the behaviour of a circuit at gate level is matched by its 
behaviour at switch level. 

4 The Environment 

The Glass user environment consists of a 5 pass front end which translates 
and expands Glass text into appropriate kernel Glass abstract syntax trees 
(asts) , a number of semantic functions, for the digital as well as for the 
analogue domain, and a menu driven shell which hides the user from bare 
UNIX commands. 

A more detailed picture of the front end is presented in Fig. 2 First the 
C preprocessor is used to perform inclusions of other. Glass files. Then the 
parser translates the text into a full Glass ast. This is then partially checked 
by the context sensitive analysis done by the type checker. This check can 
only be partial because parametrized types only get their fixed size after 
macro expansion. If no errors are detected thus far, macro expansion will 
expand all macro applications. After that a last type check is performed, 
checking the sizes of all terminals in the description. Finally the description 
is stored on disk using a text representation of the ast of the description, 
inspired by Miranda abstract datastructures. 

The parser and macro expander are written in Glammar, which is a 
variant of EAG (WATT, 1974) (MEIJER, 1986). The type checker and size 
check are currently written in C, although their first versions were written 



232 M. SE UTTER 

Glasstext 

1 ci preprocessor 

Glasstext 

Ip~~ 
Glassast 

1 typechecker 

Glassash 

1 macro expansion 

Glassash 

1 size check 

Kernel Glassast, represented as 

Mirl1r~~pes 

Fig. 2 The front end of the environment 

in Pascal. The semantic functions are written in several languages: C, Mi­
randa, Prolog, Pascal, and others. This variety of programming languages 
caused severe portability problems during the course of the project. More­
over during the course of the project the actual form and representation of 
the datastructures was not stable. 

A tool therefore was developed, called Tm (VON REEUWIJK, 1989). 
This takes a datastructure definition file and a template file as input and 
generates data structure definitions plus access, building, loading, saving 
and traversion routines for one of the languages used in the project, steered 



FORMAL HARDWARE DESCRIPTION USING GLASS 233 

by the template file. Input of the datastructures of a description to a se­
mantic function is coded by one call only to the generated routines thereby 
shortening the development time of that semantic function. 

During the project semantic functions were developed hi three kinds: 
The first kind translates the kernel Glass datastructures directly into the 
desired aspect of the system. An example of these are simple cost func­
tions. The second translates the datastructures into computer programs 
expressing for instance behaviour in terms of the semantics of that com­
puter language. These then may be compiled and run. (This is in fact 
simulation). The third kind converts the datastructures to input for al­
ready existing analysis and simulation tools. 

The following semantic functions have been developed until now: 
@ for the digital domain: 

- simplex: truth table semantics 
- multiplex: stream semantics 

uflat: flattener for directional systems 
uflat2: same, but flattens to a list of atom applications 
dtm: discrete timing model 

- dtme: discrete timing model, Eichelberger variant 
discev: discrete event modelling 
mossimII: switch level simulation 
senspath: sensitized paths 
cpm: worst case delay 

@ for the analogue domain: 
- kgflat: flattener for adirectional systems 
- kgspice: conversion to Spice 
- kganp: conversion to Anp3 (Analysis of zeroes and poles) 

kggnl: conversion to netlist format 
gldraw: conversion to graphics language for schematics 

5 Conclusions and Future Work 

A language for systematic hardware description has been designed based 
upon the principle of systems semantics. A 'describing environment' has 
been implemented as well as a number of semantic functions. 

Our future research will continue into two directions: 
(!) We will try to enhance the set of semantic functions with even more 

sophisticated functions. One may think of functions handling hybrid 
descriptions like pass transistors, transmission gates, etc., which are 
frequently encountered in VLSI design. A further field of research 
would be the development of general timing models for the digital as 



234 M. SBUTTBR 

well as for the hybrid field. Another interesting research area is the 
generation of layout out of Glass descriptions. 

@) Glass can only be used for formal hardware description. We would 
like to have synthesis tools that generate Glass descriptions out of 
a desired description of the circuits' behaviour, which then may be 
verified using the semantic functions. These synthesis tools together 
with the existing environment would constitute a good environment 
for doing VLSI design. 

References 

BOUTE, R. T. (1988): Systems Semantics: Principles, Applications, and Implementation. 
AGM Transactions on Programming Languages and Systems, Vol. 10, No 1, Jan 
1988, pp. 118-155. 

MEIJER, H. (1986): Programmar, a Translator Generator, PhD Thesis, Catholic University 
of Nijmegen, 1986. 

VAN REEUWIJK, C. (1989): tm: a Code Generator for Structured Data Interfaces (draft), 
Esprit report E881/b38/TUD /CvR/8905, May 1989. 

WATT, D. A. (1974): Analysis - Oriented to-Level Grammars, PhD Thesis, University of 
Glasgow, 1974. 

Address: 

M. SEUTTER 

Dept. of Computer Science 
Faculty of Mathematics and Informatics 
University of Nijmegen 
Toernooiveld 1 
6525 ED Nijmegen 
The Netherlands 


