
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 35, NO. I, PP. ~63-~7~ {1991}

THE USE OF A FUNCTIONAL DESCRIPTION
LANGUAGE

FOR TEST GENERATION
J. SZIRAY and Zs. NAGY

Computer Research and Innovation Center, SZKI
H-1251 Budapest, Hungary

Received: Febr. 1, 1991.

Abstract

The paper presents a new hardware-description language (OPART) which serves for spec
ifying the functional models of logic elements for an automatic test-generation program.
The significance and novelty of OPART rely on the fact that it enables in a user-oriented
way to define models not only for fault simulation, but also for algorithmic test calcula
tion. In the paper the basic syntactic features of OPART are first discussed. After that
examples and the computer implementation will be overviewed.

Keywords: : Test pattern generation, fault simulation, hardware-description languages,
logic modelling.

Introduction

The automatic test-generation programs (ATGP's) used in digital electron
ics model the circuit elements (modules) by means of built-in subroutines.
As a consequence of this fact, the scope of logic diagrams accepted by an
ATGP greatly depends on the set of the modelling routines. Whenever the
extension of this set is required, the task is solved by way of additional
software development on the original program. From the user's point of
view, the software development is infeasible. Instead, the user is interested
in a system that enables the logic behaviour of a module to be defined by a
special hardware-description language (HDL). In this case, the compiler of
the HDL produces an object code in a library which can then be processed
by the original ATGP.

As seen, the approach outlined is similar to that used in modern logic
simulators which serve for design verification. On the other hand, in the
case of an ATGP the task of modelling is usually not the same. As a rule, an
ATGP involves a test-calculation component and a fault simulator, which
require different functional models, whereas a logic simulator has only one
model.

The aim of our paper is to present an HDL that is meant for the pur
poses described above. The language (called OPART) has been developed

264 J. SZIRAY and ZS. NAGY

for the connecting test-generation program DIAS (SZIRAY, 1987). DIAS
handles the logic elements of a circuit on the functional level (BREUER -
FRIEDMAN, 1980). It means that the logic values of an element are evalu
ated with the knowledge of its external functional behaviour. The built-in
modules in the system DIAS are various logic gates and flip-flops, bus
element, and transfer gate. .

It should be added that, as known, the hierarchical level of logic mod
elling influences the feasibility and computational efficiency of test calcu
lation algorithms to a great extent. The importance of functional level
models versus gate-level ones is increasing rapidly with the growing com
plexity in the VLSI area. Here the Application-Specific Integrated Circuits
(ASIC's) are also to be mentioned, which have customized functional cells
as fundamental elements.

Requirements to the Language

DIAS includes a fault simulator and three components for automatic test
generation. Fault simulation is performed on the ground of the so-called
concurrent approach (ULRICH - BAKER, 1974), (BREUER - FRIEDMAN,
1976). The test generator part applies a random, an adaptive random, as
well as a deterministic method.

The random and adaptive random processes are influenced and con
trolled by the circuit behaviour upon the generated tests. Here the be
haviour is monitored by means of fault simulation. The deterministic test
calculation applies the so-called composite justification algorithm (SZIRAY,
1979), (SZIRAY, 1982). The algorithm is based on calculations performed
simultaneously in the faulty and fault-free circuit versions, where the only
computational means is iterative line-value justification (BREUER - FRIED
MAN, 1976). Line-value justification is a procedure with the aim of suc
cessively assigning input values to the logic elements in such a way that
they are consistent with each previously assigned value. The salient advan
tage of composite justification is the total absence of the fault propagation
phase. This feature has greatly facilitated the use of an HDL.

As known, concurrent fault simulation and composite justification
use different models for a logic element. The simulation model defines the
output and next state values as a function of the input and present state
values. It will be referred to as the normal model. The other model is
called inverse and it serves for line-value justification. An inverse model
defines the set of possible input patterns which result in a specific state
or output pattern. Since the evaluation of a logic element within DIAS is

FUNCTIONAL DESCRIPTION LANGUAGE FOR TEST GENERATION 265

done in the unit-delay mode, the normal and inverse models do not involve
timing information.

DIAS handles a five-valued logic system. This system incorporates
the following logic values: logic 0, logic 1, unknown (u), high impedance
(Z), and don't care (d). In order to be compatible with DIAS, the OPART
language must handle the same multi-valued logic.

The complexity of a logic module is not limited in principle. Only
practical trade-offs, such as processing time, and user efforts in terms of
modelling accuracy are to be considered. It should also be added that
the existence of an inverse model is not a prerequisite, since in case of its
absence only the deterministic test calculation will be omitted in a DIAS
run.

Finally, considering the wide-spread D-algorithm as a test-calculation
tool (BREUER - FRIEDMAN, 1976), (ROTH, 1966), it is known that the algo
rithm needs two functional models: a model for the D-propagation through
an element, and another one for line-value justification. In principle, it is
feasible to elaborate an HDL to meet these modelling requirements. How
ever, such a language would be more complicated than that which does not
handle D-propagation, as in the case of OPART. Moreover, the inevitable
design of the propagation D-cubes for a module is a considerable additional
burden for the user (BREUER - FRIEDMAN, 1980).

In" the following the basic syntactic features of OPART are discussed.
After that examples and the computer implementation will be overviewed.

Features of the Syntax

Declarations:

The declarations statements are for prescribing the program variables, con
stants, I/O, state and bus variables of the logic module. The use of vectors
and arrays is also allowed. Examples of declarations:

INTEGER

CONST

alfa, beta [10], ro [3,5,8]; {integer variable,
vector, and array}

six = 6, bin_ four = B'0100', ali = X'BABA';
{integer, binary, and hexadecimal constants}

BIN seq [16] (3), bit; {binary vetor and variable}
IN
OUT
STATE

selecL vector [0:7], contr [4], strobe; {inputs}
count [0:15], sum [4], carry_ bit; {outputs}

mem [128], store [2]; {internal states}

266 J. SZIRAY and ZS. NAGY

Here the brackets denote vectors and arrays, while the parentheses include
the length value. A from-to index range can be designated by a colon as a
separator.

Subroutines:

The number of subroutines within a functional program is arbitrary. The
subroutines are in close relationship with the main program, so they must
be included within the frame of it. A subroutine can have formal parame
ters of any type. Example for a subroutine head where integer, hexadeci
mal, input, and output type parameters are declared:

SUBR bus_ check (INTEGER alfa, omega [12];
HEX grand [6] (3), can[2], yon;
IN der, die, das; OUT des [4])

Arithmetic and Logic Operations, Relations:

OPART has two arithmetic operations: addition and subtraction. Further
more, the following logic operations are allowed: AND, OR, NAND, NOR,
INVERSION (NOT), EXCLUSIVE OR (XOR), and EQUIVALENCE
(EQV).

These operations can be executed either with two operands, or with
a single operand. For example,

NOT (stan AND pan) EQV ben

yields a bit string of the same length as the operands have, while

XOR asterisk

is a one-bit result of XOR-ing the components of the vector asterisk.
Concatenation of strings and designation of subranges in a string are

also permissible. The language handles the usual comparative relations,
true/false logic conditions, and conditional expressions. It should be men
tioned that the consistency relation between two logic values is also pro
cessed. For example, 0 and 1 are inconsistent, while d and any other value
are consistent with each other. The relations are defined for string variables
too, where multivalued logic is processed. If, for instance,

art = B'101', bart = B'Odl', cart = B'OZd',

then

art - bart and bart - cart

are false and true consistency relations, respectively.

FUNCTIONAL DESCRIPTION LANGUAGE FOR TEST GENERATION 267

Software functions:

Another important feature of the language is the use of software generators
which are- standard functions. These functions serve for generating regu
lar bit sequences, where the argument is an arbitrary logic or arithmetic
expression. The standard functions are as follows: incrementation, decre
mentation, various shift operations, inversion, computation of odd or even
parity bits. As an example consider the following statement:

eta = INCR (kappa AND lambda XOR SHL (mu)).

Here INCR increments the actual value of its argument by one. This argu
ment is computed in the following way: the bit by bit logic multiplication
of kappa and lambda is added by the exclusive or operation to the bit vector
of mu that had been shifted to the left by one position.

Structuring statements:

The flow control of an OPART program is organized by means of the fol
lowing statements: GO TO, IF-THEN-ELSE, CASE for unconditional and
conditional branching, and FOR-DO, WHILE-DO for looping. The struc
turing statements can arbitrarily be nested with each other.

The activation of a subroutine is carried out by the CALL statement
where the actual values of the parameters are also given.

The counter variable:

In case of an inverse program, usually more than one input patterns belong
to an output or state pattern. To keep account of the different solutions
OPART maintains a dedicated counter variable with the fixed keyword
#TURN.

Examples

In this section three brief examples will be shown to illustrate the use of
the language.

1) The first example is the normal functional description of the parity
generator circuit of type SN74180.

PROGRAM /NORMAL/ pargen

IN {Input byte to be checked for parity}

268 J. SZIRA Y and ZS. HA GY

in_even,
in_odd;

{Logic level of even parity}
{Logic level of odd parity}

OUT sum_even,
sum_odd;

{Signal for even parity}
{Signal for odd parity}

sum_even = NOT in_even
AND {NOT in_odd OR

. OR NOT in_odd AND

sum_odd = NOT in_even
AND (NOT in_odd OR
OR NOT in_odd AND

END PROGRAM {pargen}

PARODD (in_vect))
PAREVEN {in_vect)j

PAREVEN (in_vect))
PARODD (in_vect)

The only comment to the above program is that PARODD and
PAREVEN are the standard functions for generating a logic 1 for an odd
parity and even parity vector, respectively.

2) The second example is an OPART description of the 8-bit shift
register of type SN74198. Here clear is the clear input, clock is the clock
signal, data is the vector of data inputs, sO and sI are control inputs,
sin 1 and sin r are the serial inputs of shift left and shift right, respectively,
while q denotes the 8-bit output. The register is edge-triggered. In order
to handle this control mode, an extra state bit is introduced in addition to
the eight storage bits. For the sake of brevity, only the logic values 0 and
1 are taken into account in this functional specification.

PROGRAM INORMALI shifL8

IN sO, sI, sinl, sinr, data [8], clear, clock;

OUT q [8];

STATE clock...st, q_st [8];

IF clear == 0 THEN q...st = B'O' * 8 {Each bit is set to zero}

ELSE

IF (clock...st == 0) AND (clock == 1) THEN

{Rising edge of clock occurred}

CASE sO I sI

FUNCTIONAL DESCRIPTION LANGUAGE FOR TEST GENERATION

OF
OF

OF

B'll':
B'10':

B'01':

END CASE

END IF

END IF

q-st = data
IF sinl == 1
THEN q-st = SHLONE (q-st)
ELSE q-st = SHL (q-st)
END IF

IF sinr == 1
THEN q-st = SHRONE (q-st)
ELSE q-st = SHR (q-st)
END IF

q = q-st; {Setting of the output values}

{Parallel load}
{Shift left}

{Shift right}

clock-st = clock {Storing of the clock-signal value}

END PROGRAM {shifL8}

269

It can be seen that the compound statements are terminated by their
keywords followed by END, e. g., IF - END IF. A CASE section is desig
nated by the form 'OF actual constant:'. The software generator SHLONE
shifts the bits of q to the left by one position where the entering bit is 1.
SHL does the same, with the entering bit O. In a similar way, SHRONE
and SHR result in shifting to the right, with the entering bit 1 and 0,
respectively.

3) The third example is the inverse functional program of an 8-bit
multiplexer.

PROGRAM /INVERSE/ multiplex

IN addr [3],
data [0:7],
enable;

{3 address bits}
{8 data bits}

{Enable input}

OUT ex; {Output}

data = B'd' * 8; {Each data bit is set to don't care}

IF (ex == 0) OR (ex == 1) THEN

enable = 1;

270 1. SZIRAY and ZS. NAGY

IF #TURN <= 8 THEN

addr = #TURN - 1;
data [#TURNj = ex

END IF

IF (#TURN > 8) AND (ex == 1) THEN

#TURN =-1

END IF

IF (#TURN > 8) AND (ex == 0) THEN

enable = 0;
addr = B'd' * 3;
#TURN = 0

END IF

ELSE

IF ex == B'd' THEN {The output value
is don't care}

addr = B'd' * 3;
enable = B'd';
#TURN = 0

ELSE {The output value is unknown}

#TURN = -1

END IF

END IF

END PROGRAM {multiplex}

As for the use of #TURN the following rules are to be considered:
- The iterative activization of the program multiplex is done from

DIAS, where the actual value of ex is an input to the inverse program.

FUNCTIONAL DESCRIPTION LANGUAGE FOR TEST GENERATION 271

- Starting with #TURN = 0, the incrementation of #TURN by one
before each activization of multiplex is executed in DIAS.

- The inverse program can also set the counter value, with the fol
lowing meanings:

#TURN = 0:

#TURN = -1:

the last solution (input pattern)
has been produced for DIAS;

there is no existing solution.

The Compiler and the Processing Environment

The OPART compiler operates in two passes. In the first pass the syntactic
and semantic analysis of the source text is accomplished. The second pass
serves for the translation when the object code is generated. The compiler
is capable of detecting more than 100 user errors.

The code is a sequence of various command records in a concise form.
Each record contains a command code and the necessary parameters. These
records are processed in DIAS by a so-called run-time system (RTS).

The RTS has the following main functions:
- It maintains a permanent communication link between the object

code and the fault-simulation/test-calculation component of DIAS. This is
achieved through a direct access to the input, output and state variables
in the code.

- It interprets the command records of the code in the required
order, thus performing all the necessary calculations in the actual run-time
situation.

The test-generation system DIAS runs on DEC-VAX computers, in
VMS operating system. The OPART compiler has been developed in the
same environment, and also on IBM-PC-XT / AT in MS-DOS operating sys
tem. Both versions and the run-time system are programmed in PASCAL
language.

The compilation speed experienced so far on a MicroVAX II has
ranged from 500 to 2000 lines/minute, with the inclusion of cross-reference
lists.

Thus far the normal and inverse functional descriptions of the fol
lowing modules have been completed: multiplexer, decoder, shift register,
counter, comparator, parity generator and various combinational elements
(cells) of gate-array circuits. These models have also been involved in sev
eral test generation runs with satisfactory efficiency.

2i2 J. SZIRAY and ZS. NAGY

Finally, it should be noted that the normal and inverse codes of a
logic module must be consistent with each other. To facilitate for the
user to achieve this goal a code verification program has been developed.
In our solution the two codes are passed to the verifier program which
processes them alternately and compares the corresponding input/output
values computed in this way. Within a computational phase, first an inverse
code is taken. Here the input patterns obtained are sent one-by-one to the
normal code where the outputs are calculated. Thus the verifier program
is able to detect any inconsistency, both at an input and at an ouput
line. It can be seen that the process outlined is essentially a two-direction
simulation of a logic element.

Acknowledgements

The authors wish to thank G. TE~iESYARI and A. DERI for their valuable advice In

developing the OPART language.

References

BREUER, M. A. - FRIEDMAN, A. D. (19i6): Diagnosis and Reliable Design of Digital
Systems, Computer Science Press, USA,

BREUER, M. A. - FRIEDMAN, A. D. (1980): Functional Level Primitives in Test Gener
ation, IEEE Trans. on Computers, Vol. C-29, pp. 223-23.5, March 1980.

ROTlI, J. P. (1966): Diagnosis of Automata Failures: a Calculus and a Method, IBM
Journal of Research and Development, Vol. 10, pp. 278-291, July 1966.

SZIRAY, J. (19i9): Test Calculation for Logic Networks by Composite Justification, Digital
Processes, Vol. 5, No. 1-2, pp. 3-15.

SZI RAY, J. (1982): Functional Level Test Calculation and Fault Simulation for Logic
Networks, Discrete Simulation and Related Fields (Edited by A. Javor), pp. 223-
234, North-Holland Publishing Company, Amsterdam.

SZIRAY, J. (198i): The Test-design Program System DIAS, The First Hungarian Custom
Circuits Conference, Proceedings, pp. 303-309, Gyongyos, May 198i.

ULRIClI, E. G. BAKER, T. (19i4): Concurrent Simulation of Nearly Identical Digital
Networks, Computer, Vol. i, pp. 39-44, April 1974.

Address:

J6zsef SZIRAY

Zsolt NAGY

Computer Research and Innovation Center
P.O.Box 19, H-1251, Budapest, Hungary

