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Abstract 

It is shown that at certain singular values of the complex frequency the field in a waveguide 
with inhomogeneous dielectric cannot be described as a superposition of modes, because 
the eigenfunctions do not form a complete set. At these singular complex frequencies the 
fields of two different modes become identical and this common field is a special form of 
a generalized mode which exists only at singular complex frequencies. The generalized 
mode has a more complicated mathematical form than the usual mode. As for certain 
waveguides singular complex frequencies may assume pure imaginary values, these gen­
eralized modes may exist also at pure harmonic time dependence. In another paper it 
will be shown that the modal expansion is possible at singular complex frequencies. too, 
if generalized modes are used in addition to the usual modes. 
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Introduction 

According to an important statement of the theory of electromagnetism 
the field in a waveguide with homogeneous dielectric can be described as 
a superposition of modes if the variation with time is harmonic. As the 
modal expansion based on this fact is a very useful tool for solving prob­
lems connected with waveguides, the question may arise whether a similar 
statement is true in the case of an inhomogeneous dielectric, a question 
which is not yet answered in the literature. 

This problem can be treated more conveniently if the modes are de­
fined supposing not only the harmonic, but the more general time depen­
dence of the form exp(st), where the complex frequency s may assume any 
complex value. Simple physical interpretation is possible only if Res ~ 0, 
and only the case Res=O has practical importance, but a boundary value 
problem (abbreviated further on as b.v.p.) which is related to a waveguide 
has mathematical solutions for any value of s. It will be shown in this pa­
per that the field in a waveg1Jide with inhomogeneous dielectric cannot be 
described as a superposition of modes at certain singular values of s, and 
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for certain waveguides some of these singular values are pure imaginary. 
The modal expansion may not be used at these singular frequencies unless 
the concept of mode is generalized, which will be done in this paper. 

Generalized Modes 

Consider a lossless waveguide the axis of which is parallel to the z-axis of 
a Cartesian coordinate system, and in which the permittivity c; and the 
permeability f..L depend only on the coordinates x and y. The electric and 
magnetic field are written as: 

e = (ET + Ezk) exp(st), 

H = (HT + Hzk) exp(st). 

(1) 

(2) 

Here k denotes the unit vector parallel to the z-axis, ET and HT are per­
pendicular to it and together with Ez and Hz , do not depend on the time. 
In consequence of Maxwell's equations, ET satisfies the equation 

where the subscript T of the vector operations denotes that they must be 
performed with respect to the transverse coordinates x and y, only. 

The usual modes, which will be called simple modes in this paper, are 
solutions of equation (3) in the form 

ET(X,y,Z) = e(x,y)exp(-,z). (4) 

With the notation 

(5) 

the vector function e(x, y) satisfies the equation 

f..Lcurl(.!.curle) - grad(!divc;e) + s2c;f..Le = Ae. 
f..L c; 

(6) 

As the wall of the waveguide is assumed to be an ideal conductor, the 
tangential component of the electric field vanishes on it, so e fulfils the 
following boundary conditions at the wall: 

n x e = 0, (7) 
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divce = O. (8) 

Here n denotes the normal vector to the wall, and (8) is a consequence of 
the fact that Ez = 0 at the wall. In the b.v.p. described by equations (6)-(8) 
A acts as eigenvalue. The differential equation (6) has a sense only in those 
points of the cross-section A of the guide in which the functions c( x, y) and 
/-L(x, y) and their derivatives are continuous. If the cross-section is com­
posed of several regions inside of which this condition is fulfilled, boundary 
conditions must be considered along the curves separating these regions 
(MAGOS, 1979). More precisely, a generalized solution of the b.v.p. can be 
defined in a Soboliev space, see e. g. (LADYZHENSKAIA and URAL'TSEVA, 

1973). 
We shall now examine solutions of equation (3) in the form 

f( 

ET = L dk(X, y) (,z)k exp( -,z). (9) 
k=O 

Such a solution can be regarded as the generalization of the simple mode 
given by (4), and so it will be called generalized mode of order K. A 
generalized mode of first order can be written in the form 

ET = (~(x,y) + ,ze(x,y)) exp(-,z), (10) 

where the notations d = do and e = dl have been introduced. It can be 
easily proved that e must satisfy equation (6) and the boundary conditions 
(7)-(8), which explains the notation, and d must satisfy the equation 

/-Lcud (;curld) - grad (~dived) + iC/-Ld = A(d - 2e) (11) 

and the boundary conditions 

n x cl = 0, (12) 

dived = O. (13) 

For a fixed eigenvalue An and eigenfunction en of the b.v.p. (6)-(8) equa­
tions (11)-(13) describe an inhomogeneous b.v.p., the homogeneous ver­
sion of which has en as solution. According to Fredholm's alternative the 
solubility of such an inhomogeneous problem can be examined with the 
solutions of the adjoint homogeneous problem, see e. g. (L.-\DYZIIENSKAIA 
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and URAL'TSEVA, 1973). It can be shown that the adjoint problem of the 
eigenvalue problem (6)-(8) is defined by the equation 

(1 ) (1.) *2 curl -;;,curllLg - €grad ;dlV g + s €ILg = vg 

and the boundary conditions 

n X g = 0, 

div€g = 0, 

(14) 

(15) 

(16) 

where s* is the complex conjugate of s. The eigenvalues of the two b.v.p. 
are in mutual correspondence through the equation 

(17) 

and the multiplicities of the corresponding eigenvalues are equal. The solu­
tions of both b.v.p. can be regarded as elements of the L2(A) space formed 
by vector functions that are given by two complex components in the cross­
section A. This Hilbert space has the following scalar product: 

(u, v) = jj(uxv; + uyV~) dxdy. (18) 

A 

Let em and gn denote eigenfunctions corresponding to the eigenvalues Am 
and Vn , respectively. In this case 

(19) 

The eigenfunctions gn are related to the magnetic field of the simple modes, 
because the vector HT in (2) can always be given in the form 

(20) 

According to Fredholm's alternative the inhomogeneous b.v.p. (11)-(13) 
with a fixed eigenvalue An and eigenfunction en has solutions if and only 
if in the sense of the scalar product (18) en is orthogonal to those eigen­
functions of the adjoint b.v.p. which correspond to the eigenvalue Vn = A;,. 
Then because of (19), en is orthogonal to all the eigenfunctions of the ad­
joint b.v.p. In this paper an eigenfunction en will be called singular if it is 
orthogonal to all the eigenfunctions of the adjoint b.v.p., otherwise it will 
be called regular. If no singular eigenfunction belongs to an eigenvalue, the 
latter will be called regular, otherwise singular. A value of the complex 
frequency s will be called singular if a singular eigenvalue belongs to it, 
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otherwise it will be called regular. It can be shown that both the complex 
frequency S = 0 and the eigenvalue >'n = 0 are regular. It can also be 
shown that with the exception of these two cases a complex frequency s 
and a corresponding eigenfunction en are singular if and only if 

jr{ (2 (2 2) 1 (8eny 8enx)2) 
} S e enx + eny +;, 8x - ay dxdy = O. 

A 

(21) 

In the case of a regular eigenvalue >'n only the trivial solution e 0 of 
the b.v.p. (6)-(8) may figure in (10). If e = 0, the b.v.p. (11)-(13) has 
the eigenfunction en as solution, and so the generalized mode of first order 
given by (10) is reduced to the simple mode (4). Thus the simple mode 
can be regarded as a trivial form of the generalized mode. The nontrivial 
form of the generalized mode exists only for singular eigenvalues. Similarly, 
a generalized mode of first order can be regarded as a trivial form of the 
generalized mode of second order, in which d2 = O. It can be shown that 
the nontrivial form of (9) with K = 2 exists if and only if the solutions 
d of the b.v.p. (11)-(13) are also orthogonal to all the eigenfunctions of 
the adjoint b.v.p. This is a strongly degenerated case, which will not be 
treated in detail. 

The transversal electric field of the generalized mode of first order is 
given by (10). The following formulae give the other components figuring 
in (1)-(2): 

Ez = ~e (dived + (1 + IZ )divee) exp( -Iz ), 

1 
Hz = --(curld+lzcurle)k exp(-Iz ), 

Sf-L 

(22) 

(23) 

HT ~ ~ x (cUrl~curl d + s2c:d + (1 + IZ)( curl ~curl e + s2ee)\ exp( -{Z). 
IS f-L f-L ') 

(24) 
In these formulae s is a singular complex frequency, e a singular eigenfunc­
tion and cl a solution of the b.v.p. (11)-(13). 

Characterization and Types of Singular 
COlllplex Frequencies and Eigenvalues 

In the b.v.p. (6)-(8) the complex frequency S may be regarded as 
a complex variable. Then the eigenvalue problem defines a function >.( s) 
having an infinity of branches. The branch points of this function represent 
the most frequent type of singular complex frequency and eigenvalue. 



78 A. MAGOS 

In order to see the details let us consider a branch .An (s) of the function 
.A(s) in the neighbourhood of a point so. If .Ano = .An(so) is not a singular 
eigenvalue, So is a regular point of the function .An (s), which is shown by 
the fact that the Taylor's series 

00 

.An(s) = L .Ank(s2 - s5)k (25) 
k=O 

exists. Details of this series expansion are given by MAGOS (1979). If .Ano 
is a simple eigenvalue, the coefficient .AnI is given by 

, _ (C:j.Leno, gnO) 
AnI - ( ) , enO, gno 

(26) 

where enO and gnO denote eigenfunctions corresponding to the eigenvalues 
.AnD and ZlnO = .A~o, resp. If .AnD is a singular simple eigenvalue, i. e. if 

(27) 

and if in addition (C:j.Leno, gnO) #- 0 , the coefficient AnI and with it the series 
(25) do not exist. This means that So is a singular point of the function 
An (s). 

In order to show that if So is a singular point, it is a branch point, let 
us try the series 

An(S) = .AnD + f Ak ( js2 _ s6) k 
k=l 

(28) 

as a generalization of the series (25). It can be shown that the series (28) 
exists even if (27) is true, and 

A2 _ -2' (C:j.Leno, gnO) 
1 - AnD ( )' do, g"o 

(29) 

where do is a solution of the b.v.p. (11)-(13) with .A = AnD and e = enD. As 

j s2 - s6 has two values, the series (28) gives two branches of the function 

A( s) in the neighbourhood of the point So, which is a common branch point 
of the two branches. 

If the product C:j.L is constant, especially if the dielectric is homoge­
neous, the function A(S) has no branch points and splits into independent 
branches of the form 

(30) 
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~2 = 15 
1:.1 

Fig. 1. Circular waveguide with two dielectrics. 

where en is a positive real constant. If in this case en is an eigenfunction of 
the b.v.p. (6)-(8), then gn = e:en is an eigenfunction of the adjoint b.v.p. 
and so (en, gn) =f. 0, which means that in this case no singular complex 
frequencies exist. 

In other cases the singular complex frequencies can be determined 
with the aid of (21). An example is shown in (1IAGos, 1986) where the 
branch points of A(S), which are always singular complex frequencies, are 
determined for a rectangular waveguide with two dielectrics. At this ar­
rangement no branch point can be found on the imaginary axis of the 
s-plane. But this is not true e. g. for the waveguide in Fig. 1, which was 
examined by CARLIN (1974) in another connection. In Fig. 2 the eigen­
values are given along the imaginary axis of the s-plane as a function of 
the normed frequency w = JfLOe:1Row for the two lowest modes depending 
on the cylindrical coordinate rp in the form cos rp. The real and imaginary 
parts of the normed eigenvalues 3:"n = R5An are represented by continuous 
and dotted lines, respectively. (In order to get these curves the eigenvalue 
problem (6)-(8) was reduced with the aid of the finite difference method 
to an algebraic eigenvalue problem and the latter was solved numerically 
with the aid of Wilkinson's method.) Obviously, the complex frequencies 
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v 
Fig. 2. Eigenvalues along the imaginary axis of the s-plane for the two lowest modes of 

the waveguide in Fig. 1. 

SI = jWl and S2 = jW2 are common branch points of the represented 
branches of the function. 

The previously described phenomena appear also in the case of two 
coupled lines if they are a model of coupled TM and TE modes. If the 
coupling is between the two shunt capacitors, the series impedance matrix 
and the shunt admittance matrix of the coupled lines can be expressed as 

(
SL ' 1 

Z(s) = s ~ "S"V; (31) 

( 
sCp 

Yes) = c s 12 
(32) 

If Ai (s) is an eigenval ue of the matrix Z (s ) Y (s), similarly to the case of 
the waveguides, the frequency dependent propagation constant I; (s) can be 
determined from the equation Ai = If. The eigenvalues Ai can be expressed 
as 

(33) 

where 
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D _ L s Cf2 
- Cs ' 

E=~(Cp_Ls)2 
4 Cs Cp 

The functions Al (s) and A2 (s) can be regarded as two branches of a function 
A(S), which has four branch points in the s-plane. If D2 > 4CE, i. e. if 

1 C12 1 > 1 Cp - ~s CS I, 
p 

(34) 

these branch points are on the imaginary axis. At the real frequencies 
corresponding to the pure imaginary branch points the two propagation 
constants are equal and a generalized mode exists, i. e. terms in the form 
z exp( ±,z) figure in the formulae that describe the waves propagating along 
the two coupled lines. 

If in the waveguide of Fig. 1 the ratio c2/ Cl is diminished starting 
from the value 15, the two branch points come closer to each other on 
the imaginary axis, and at the value c2/cl = 7.45 they coincide in the 
point So = jl.l/(V!10clRo), afterwards they quit the imaginary axis as a 
pair of branch points, symmetric to it. For the transitional value c2/ Cl = 
7.45 there is instead of two, only one singular complex frequency on the 
imaginary axis, the value So, and So is not a branch point. If s = So, not 
only the denominator of the right side of (26) is zero, but the numerator 
also. In the neighbourhood of So both branches of A( s) can be given by 
series in the form (25) with equal values of )'nO. The two different values of 
the coefficient AnI cannot be calculated with the aid of (26), but in a more 
complicated way not detailed here. 

It is theoretically possible that not only two, but three branches of 
A(S) have a common branch point at a value so. For these branches the 
series (28) does not exist, because on the right side of (29) the denominator 
is zero and the numerator is not, but the three branches have a common 

series consisting of the powers of yJ 52 - s5' It can also be shown that 
a nontrivial form of the generalized mode of second order exists for the 
singular complex frequency So. 

These results concerning a singular eigenvalue AnO which is simple and 
belongs to the singular complex frequency So can be summarized as follows. 
Most frequently but not necessarily So is a branch point of the function A(S), 
and most frequently but not necessarily it is a common branch point of only 
two branches. \Vhether the singular complex frequency So is a branch point 
or not, two or rarely more branches of A( 5) have the same value AnO in the 
point So, and there the same eigenfunction belongs to these branches. 

Two branches of the function A(s) may have the same value AnO at a 
regular complex frequency So, too, but in this case the regular eigenfunc-
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tions belonging to the two branches are linearly independent, i. e. AnO is 
a double regular eigenvalue. It is also possible that three branches have 
the same value AnO in a point so, and one branch is regular in so, and the 
two others have a common branch point there. In this case AnO is similarly 
a double eigenvalue, and one of the eigenfunctions corresponding to it is 
singular, but the other linearly independent eigenfunction is regular. 

In a more general way the following statements can be formulated. 
If only one branch of the function A(s) has a value AnO in a point so, the 
eigenvalue AnO is surely regular. If several branches have the same value AnO 
in the point so, let the multiplicities of the eigenvalues belonging to these 
branches be summed in the points of a small neighbourhood of so. If the 
neighbourhood is small enough, this sum has the same value N in all points, 
may be except so. If N equals the multiplicity M of the eigenvalue Ano, the 
eigenvalue is regular. If M < N, the eigenvalue is singular, and for So and 
AnO a nontrivial form of the generalized mode (9) with K = N - M exists, 
or several generalized modes exist for which the sum of the parameters K 
equals N - M. 

Conclusions and Summary 

If the product €J..L is not constant in the cross-section of a waveguide, 
for an infinity of discrete values of s the adjoint eigenvalue problems de­
scribed by (6)-(8) and (14)-(16), resp. have an eigenfunction which is 
orthogonal to all the eigenfunctions of the other problem. These complex 
frequencies, eigenfunctions and the eigenvalues corresponding to them can 
be called singular. If An is a singular eigenvalue of the b.v.p. (6)-(8), the 
eigenvalue v = A~ of the adjoint problem is also singular and inversely. If 
an eigenvalue is singular, a generalized mode in the form (9) belongs to it. 

If € and j..L are constant in the cross-section, the eigenvalue problems 
(6)-(8) and (14)-(16) are of the same form, i. e. they are self-adjoint. Con­
sequently the eigenfunctions form a complete set in L 2 (A), and in such a 
waveguide a modal expansion is possible, i. e. the field can be described 
as a superposition of modes, see e.g. (JO;'IES, 1964). It will be shown in 
another paper that in waveguides with inhomogeneous dielectric the modal 
expansion is also possible at complex frequencies which are regular, i. e. 
not singular, because at regular frequencies the eigenfunctions of the b.v.p. 
(6)-(8) and (14)-(16), respectively, form complete biorthonormal sets in 
L2(A). 

Obviously, at a singular complex frequency the eigenfunctions of the 
b.v.p. (6)-(8) cannot form a complete set of functions in L2(A), because 
a function, the singular eigenfunction of the adjoint b.v.p. is orthogonal 
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to all the eigenfunctions in the set. Consequently at a singular frequency 
the modal expansion is not possible in the usual sense. On the other 
hand at singular complex frequencies and only at these complex frequencies 
nontrivial forms of generalized modes exist, and approaching a singular 
complex frequency two or more modes, which have the same field there, fuse 
into a generalized mode. This fact suggests the supposition that the modal 
expansion is also practicable at singular complex frequencies if generalized 
modes are used in addition to the simple modes. This supposition will 
be proved in another paper. As for certain waveguides singular complex 
frequencies may assume pure imaginary values, these theoretical results 
have importance for the harmonic time dependence, too. 
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