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Abstract 

In this paper two methods are shown to improve the rate of convergence of the Conju­
gate Gradient Fast Fourier Transform (CG-FFT) method for analyzing planar frequency 
selective surfaces (FSS) with finite conductivity and with arbitrary angles of incidence. 

After formulating the physical model an operator equation is written for the induced 
surface current which is first solved by the CG-FFT method. Here the norm and inner 
product are defined in detail. Then the problem of the preconditioning is discussed and a 
new procedure called Biconjugate Gradient fast Fourier transform (BiCG-FFT) method is 
developed. It is demonstrated that this procedure requires a smaller number of iterations 
than the original or the preconditioned CG-FFT method. 

At the end of the paper results of the analysis of an infinite rectangular grid ob­
tained by the different methods are given and compared according to precision and rate 
of convergence. 

Keywords: periodic structures, frequency selective surfaces. preconditioning, conjugate 
gradient FFT method, generalized biconjugate gradient FFT method. 

Introduction 

The-CG-FFT method has been applied by a number of authors (Cwn,; and 
IVlITTRA, 1985; SARKAR, ARVAS and RAo, 1986; CWIK and MlTTRA, 1987; 
CHRISTODOULO\J and KAUFFMA~, 1986) to the analysis of scattering from 
FSS consisting of arbitrarily shaped patches with finite conductivity. The 
CG-FFT method is an iterative technique that employs the CG meth:od 
to improve upon each iterate, utilizing the FFT. This method requires no 
matrix inversions. A detailed summary of the CG method may be found 
in (SARKAR and ARVAS, 1985). In spite of its advantages several authors 
have observed that in some cases the CG algorithm may converge too 
slowly to be useful (CHRISTODOULOV and EAUfF~!.-\~, 1986; E:\s and YIP, 
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1987; SARKAR, 1987; PETRE and ZOMBORY, 1978). This occurs when the 
condition number of the operator is too large. To overcome this difficulty 
two procedures are presented in this paper. 

One possible way to reduce the condition number is by precondition­
ing (KAS and YIP, 1987). Application of the preconditioned CG algorithm 
to an operator equation requires additional reprocessing of the original one. 
In our experience the rate of convergence of the preconditioned CG method 
is better than that of the conventional one only in cases where the condition 
number of the original operator is large. 

The other possible way to improve the convergence of the conventional 
CG method is by the application of the generalized BiCG-FFT method. 
This procedure was first introduced to solve electromagnetic scattering 
problems by SARKAR (1987) and was first applied to FSS by PETRE and 
ZOMBORY (1988). The generalized BiCG-FFT method does not minimize 
the residual or the error in the solution at each iteration, but reduces some 
power norm. Since our operator is a nonsymmetrical one, this method 
requires additional 2N storage locations, where N is the number of un­
knowns. 

At the end of the paper numerical results are presented to compare 
the necessary number of iterations of the conventional CG-FFT and the 
generalized BiCG-FFT method. 

Formulation 

Let us consider the problem of a uniform plane wave scattered from free 
standing periodically located conducting patches shown in Fig. 1. 

yi. 

a 

Incident field 

Periodic unit \ 
'" cell ~ 
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conducting~ 
patch 

Fig. 1. Free standing periodically located patches illuminated by a plane wave 
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The coordinate system is chosen as shown in the figure, the FSS is 
located in the plane z = 0, and a plane wave is incident upon the FSS from 
the z > 0 half-space. The geometry is determined by a, band n, and the 
loss of the patches is characterized by the surface resistance (Ra). 

It is important to note that in our physical model the conducting 
patches are sufficiently thin so that the tangential electrical field is the 
same on both sides of the FSS. 

For transverse electrical (TE) polarization the incident field compo-
nents are: 

E~ = E~ sin( -p) , E~ = E~ cosP, (1) 

where Eb is the amplitude of the incident electrical field. 
For transverse magnetic (TM) polarization the incident field is: 

E~ = Eb cos e cos P , E~ = Eb cos e sin P . (2) 

Let J be the current induced on the FSS surface due to a given incident 
field and let A be the magnetic vector potential due to this current J. At 
the z = 0 plane A can ~e written as (with the time convention exp (jwt) 
suppressed): ~ 

A(x,y) = J(x,y) * G(x,y), 

where * is the sign of the convolution and 

1 e-jkor 

G(x,y) = - --, 
47r r 

(3) 

(4) 

is the free-space Green's function. Here ko is the free-space wave number, 
and J and A are column vectors with only the x and y components included. 

The scattered electrical field E S at z = 0 can be derived from A: 

1 
EB = -.---[graddivA+k6 A j. 

JWEo 
(5) 

Fourier transforming (5), we obtain the following equation in the spectral 
domain 

- 5 1 - -
E (a, (3) = -. - G(a, (3) J(a, (3) , 

JWCO 
(6) 

where 

(7) 

is the spectral Green's matrix, where a and ,8 are the transform variables 
of x and y, respectively. 
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Since the structure is periodic, J (x, y) has a discrete spectrum in the 
transformed domain corresponding to the Floquet modes. The explicit 
expressions for C\:m,n and j3m,n are 

D:m,n = 21l"m / a - ka sin e cos p , 

j3m,n = 21rn/ (b· sin D) - 21l"m cot .0 / a - ka sin e sin P . (8) 

Taking the inverse transform of (6) and enforcing the boundary condition 
ES(x, y) +Ei(x, y) = Ra(x, y)J(x,y) on the conducting surfaces of the FSS, 
we arrive at the final equation: 

(9) 

where fc is a truncation operator restricted to the conducting surfaces. 
Equation (9) may be written in a more compact form: 

(10) 

where F and F- 1 represent the discrete Fourier and the inverse discrete 
Fourier transform, respectively. 

Equation (10) is the operator equation for the induced current and 
,,,,ill be solved using the CG-FFT method discussed in the next section. 

Solution of the Operator Equation Using the CG-FFT Method 

In this section the basic principle of the CG method is described and applied 
to the operator equation (10). This procedure is an iterative one unlike the 
conventional matrix method and possesses the following properties: 

The CG method requires much less storage ('"'-' 5N) than the conven­
tional matrix methods ('"'-' N2), where N is the number of unknowns. 

With an arbitrary initial guess the CG method always converges to 
the solution in a finite number (N) of iterations. 

After each iteration the quality of the solution is known and the mag­
nitude of the residuals decreases monotonously. 

The operator equation (10) can be written in a very simple form: 

L(J) = Y , (ll) 
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where L denotes the operator 

(12) 

and Y denotes the known excitation 

(13) 

It is important to note that the CG method has some versions (special 
cases) that yield simple algorithms (SARKAR and ARVAS, 1985). From these 
versions the following has given the fastest convergence for our problem. 

The functional to be minimized is: 

F(Ji) = IIL(Ji) _ YI1 2 
, (14) 

where J i is the value of the unknown quantity J, after the i-th iteration 
and 11· .. 11 means the norm. For the CG method one starts with an initial 
guess J 1 and lets 

PI = L'''(Rr) . 

At the i-th iteration the CG method develops the following: 

IIL*(RJI12 
ai = IIL(Pi)1I2 ' 

Ji+l = Ji + aiPi , 

Ri+l = Ri - aiL(P i) , 

b. _ IIL*(Ri+dI1
2 

1 - IIL*(Ri)112 ' 

Pi+l L*(Ri+l) + biPi. 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Here L* denotes the adjoint operator for L and is defined by the following 
inner product: 

(L(f), g) = (f, L*(g)) , (21) 

where the inner product is 

(f, g) = J fg dD . (22) 
S? 

2* 
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Here f and g are vector functions, [2 is the domain of the operator Land 
the overbar denotes the complex conjugate. The norm in (16) or (19) is 
defined as 

IIfl12 = (f, f) = J Ifl2 d[2 . (23) 
Q 

The explicit expression for the adjoint operator L is the following: 

(24) 

Equations (16)-(20) are applied repeatedly until the desired error criterion 
is satisfied. In our case the error criterion is defined as IIRII2/IIY Il2 ::; 10-4 . 

Improving the Rate of Convergence 

In this section two procedures will be shown to improve the rate of conver­
gence of the CG method. 

a) Preconditioning 

The principle of preconditioning is well known from the matrix theory 
(KAS and VIP, 1987). To formulate it let us consider the following matrix 
equation: 

l\1x = b . (25) 

The condition number k(M) of the matrix M is defined as 

K(M) = CYrnax/CYrnin , (26) 

where CYrnax and CYrnin are the largest and the smallest singular values of 
M, respectively. Preconditioning of a matrix equation consists of finding 
a pair of matrices P and Q and transforming the equation (25) into the 
equivalent pair of equations 

PMQy = Pb , x = Qy. (27) 

The CG algorithm will generally converge faster on the preconditioned 
system than on the original one if the condition number of PMQ is smaller 
than that of M. It is to be noted that the eigenvalues of the operator L are 
the same as the eigenvalues of the spectral Green's matrix G. Our purpose 



IMPROVEMENT OF THE CONVERGENCE RATE OF THE CG·FFT METHOD 91 

is to transform the original operator L into a new form in such a way as 
to have a new transformed sp:.:..tral Green's matrix which has a smaller 
condition number than that of G. 

According to KAS and VIP (1987), one can rewrite equation (10) into 
the following preconditioned form: 

where 
(29) 

and fJ is a truncation operator restricted to the nonconducting surfaces. 

The eigenvalues of (G =-E)(G + E)-l are of the form (e - 1)/(01), 
where e is an eigenvalue of G. In that way the large eigenvalues of G are 
transformed close to one and it may be expected to improve the condition 
number to its square root. 

b) Biconjugate Gradient Method (SARKAR, 1987) 

The generalised BiCG method is usually applied to solve non-tlermitian 
and poorly conditioned operator equations. The application of this method 
results in faster convergence. The generalized BiCG method does not min­
imize the residual or the error in the solution at each iteration, but reduces 
some power norms. This method, however, requires additional 2N storage 
locations. 

The functional which is minimized: 

F(1, J) = 2Re(L(1), J) = (L(1), J) + (L(1), J) , (30) 

where 'Re' denotes the real part of the inner product. 
The generalized BiCG algorithm related to the operator equation (11) 

is the following: 

and for i = 1,2 ... 

ai = 
(Ri, Qi) 

(L(Pi), Wi) , 

Ji+1 = J i + aiPi , 

Ri+1 = Ri - ajL(Pi) , 

(31) 

(32) 

(33) 

(34) 
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Qi+l = Qi - <1i L*(Wi ) , 

Ci = 
(Ri+l, Qi+l) 

(Ri, Qi) 

(35) 

(36) 

(37) 

(38) 

It is important to note that the operator L defined by equation (12) is 
a nonsymmetrical one, therefore the algorithm (31)-(38) has to be used 
(PETRE and ZOMBORY, 1988). 

Scattering Pa::.-ameters 

The scattering parameters, i. e. the voltage and the power reflection and 
transmission coefficients are the quantities of greatest importance in char­
acterizing a FSS. In order to define these coefficients for both polariza­
tions, i. e. transverse electrical (TE) and transverse magnetic (TM), it is 
necessary first to define the scattered fields. We restrict our attention to 
the dominant mode where (m, n) = (0,0), i. e. only the constant current 
components J (0,0) contribute to the scattered field (CHRISTODOULOU and 
KAUFFMAN, 1986). 

For large z /)., the scattered and the transmitted fields are the follow-
mg: 

E S = -. l_G(O,O)J(O,O)ejkoz, z > 0, (39) 
JW€O 

Et = Ei + -. l_G (O, 0) J(O, 0) e- jkoz , z < 0 . (40) 
JW€O 

For TE polarization the voltage reflection and transmission coefficient be­
comes: 

E TE 
rTE_~ 

TE - Ei ' 
o 

where 

E T'" E S ';;; + E S ;;; ET.\[ - E S ;;; I E S • ;;; 
T E = - x Sin ':i:' y cos ':i:' , T E - x cos ':i:' T Y Sin ':i:' • 

( 41) 

The subscript indicates the incident field, and the superscript the scattered 
field. 
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For TM polarization the above coefficients are: 

ETM 
T

TM _ TM 
TM -. , Eo cos6 

E TE 
TTE _ TM 

™ - Ei Cl ' o coso 

'PTM _ 1 + TTM 
.LTM - TM , ( 42) 

h E T M E S - E S ''';;; d ET E E S ''';;; E S .,;;; were now TM = x cosCP + y Sln~ an TM = x Sln~ - y cos~. 

If only the dominant mode is the propagating mode, then there are 
no grating lobes and the following equations will hold 

P. jF + ITTMI2 + ITT.EI2 + ITTMI2 + ITTEI2 = 1 d 1 TM T:>f TM T.\! , ( 43) 

where Pd is the power dissipated in the metal and Pi is the incident power. 

Numerical Results 

In this section results for the dominant mode voltage reflection and trans­
mission coefficients of the analysis of an infinite rectangular grid obtained 
by the different methods are presented and compared according to precision 
and the rate of convergence. 

Equation (11) has been solved using CG, preconditioned CG and 
BiCG-FFT methods as well. Application of these methods to the scat­
tering problem investigated means that a unit cell of the screen is divided 
into 2m X 2" segments and the;:: and ;::-1 transform are implemented by 
the FFT and the inverse FFT algorithms. In our example the CG algorithm 
used is given by equations (16)-(21), the preconditioned form is given b:;r 
equation (28) and the general BiCG algorithm is given by equations (31)­
(38). The above algorithms are applied to 16 x 16 or 32 x 32 grid divisions 
of the unit cell of the structure. The convergence criterion is the reduction 
of the relative residual to 10

2 = 10-4
. 

Let us consider the geometry of an infinite rectangular grid (Fig. 2). 
The sizes of the grid are determined by u, b and ~V, and the surface 

resistance is given by Ra. 
Fig. 3 shows the number of iterations required for convergence for a 

simple rectangular grid over a range of aj A. from 0 to 1.0 in steps of 0.1. 
Here a = b; [2 = 90°, the polarization is TE, e = if> = 0° and Ra = 
o Ohm. This figure indicates that the improvement for the preconditioned 
CG method is realized only when the condition number of the original 
operator is large i.e. the structure is near resonance. On the other hand 
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Fig. 3. Number of iterations required for convergence as a function of a/). 

the generalized BiCG method gives the fewest number of iterations over 
the entire domain regardless of the condition number of the operator. 

Fig. 4 shows the relative errors of the different methods as a function 
of the number of iterations. Here a = b, a/A = 0.25, the polarization is 
TE, e = ij5 = 0° and & = 0 Ohm. 
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Fig. 4. Relative errors as a function of the number of iterations 

It can be seen from the figure that the magnitude of the residuals 
decreases monotonously for the CG and the preconditioned CG method 
unlike the generalized BiCG method, where the fall of the residuals is not 
monotonous. 
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Fig. 6. Reflection coefficient for TE polarization as a function of a/ >. 

Figs 5-6 show the voltage reflection coefficients for both transverse 
electrical and transverse magnetic polarizations as a function of aj A. Here 
a = b, S1 = 90°, e = 70°, if> = 0° and & = 0 Ohm. 

Calculations using the generalized BiCG-FFT method are compared 
with another method (USLENGHI, 1978) which is based on a Fourier series 
expansion method solution. Our results are in good agreement with the 
results derived from (USLENGHI, 1978). 

Summarizing the results of this paper we may conclude that the gen­
eralized BiCG-FFT method can be used in a very efficient manner for an­
alyzing planar FSS. It has been demonstrated that the generalized BiCG 
method requires a smaller number of iterations than the CG or the pre­
conditioned CG method and the precision of these methods is suitable for 
numerical calculations. 
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