
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 3., NO. 2, PP. 99-111 (1990)

A MICROPROGRAM DESIGN METHOD BASED ON
MEMORY BLOCKS SEPARATED BY STATES!

K. PASZTOR- VARGA

Computer and Automation Institute
Budapest, Hungary

Received: October 11, 1989.

Abstract

In this report the connections of the synthesis method of P. Arat6 with the automata
theory are examined. A method is elaborated for realizing the automata obtained by
the above synthesis. This method is based on the results obtained here and uses some
earlier results concerning the realization with memory elements enabled by states. A
realization with memory elements enabled by states is obtained here, too, where the input
and output constraints coming from the set of disposable memory elements are taken into
consideration.

A special method is elaborated for minimizing the number of variables needed in the
realization of Boolean functions. The procedure is based on a new method for searching
prime implicants.

The conditions of the used group of states as enabling combination is investigated
and the way of its application is shown.

\Ve point out that a post qualification of the specification is given by the result of
the method minimizing the number of variables of the Boolean functions. The procedure
is illustrated on an example. ,
Keywords: Automata theory. Boolean functions, microprogramming, logic synthesis.

Introduction

The form of the Boolean (switching) functions describing the combinatorial
part of control units and the constraints concerning this form are deter­
mined by the technology of production.

In ARATO (1988) a method is outlined for the realization of high speed
microprogrammed control units. The processor is derived from the syn­
chronous phase register structure. The organization of the microprogram
storage is determined by the states, which means that a separate micropro­
gram field of the microprogram storage belongs to each state. To realize
this correspondence a suitable statement signal is sent to the enabled input

lResearch supported by the Hungarian National Fund for Scientific Research (OTKA).
Grant No. 438.

100 K. PA.SZTOR. VARGA

of the memory element realizing a microprogram. The author shows that
in this case the exponential growth of the number of the necessary memory
units can be reduced significantly. In this way a natural reduction of the
number of address lines and output lines is possible because in one state
only a subset of variables is affected. In ARATO (1988) a rule is given for
constructing microprograms. It is worth developing this idea and analysing
the automata obtained by the design in ARATO (1987).
In this paper two main problems are examined.

1. The problem of the microprogram field separation by groups of states
together with some combination of the input variables.

2. The problem of the decomposition of the output variables.
Ad 1. A minimizing method for Boolean functions (P"\SZTORNE-VARGA,

1987) is used. In that paper the duality property of Boolean algebras
is examined and an effective synthesis algorithm for Boolean functions is
derived from the results. Here these results form the basis of synthesis and
analysis taking into consideration the constraints concerning the maximal
number of input lines of the disposable memory elements. To the solution
a convenient classification of input variables is constructed, which results
in an optimal microprogram.
Ad 2. A decomposition algorithm is given for the output variables. It
assures the minimal microprogram field number in the realization.

This work based on the above-mentioned results and on the theory of
the deterministic automata gives a solution minimizing the number of the
input and output variables of the Boolean functions, defining the combi­
natorial part of the control unit and reducing the number of the necessary
memory elements.

Notations and Definitions

En - the set of the binary n-tuples or the n-dimensional Boolean
space;

Xi-

Z-

the set of the input combinations, Xi EX, n z is the number
of the signals in a combination;
one input signal, i = 1, .. , n z ;

the set of the output combinations, Zi E Z, n z is the num­
ber of the signals in a combination. Zi is one output signal,
i = 1, .. , n z ;

y - the set of the current states, yj E y, ny is the number of the
states;

y - the set of the next states, yi E Y;
X; - the X S

-> X t change of input combination;

A MICROPROGRAM DESIGN METHOD

z! - the ZS -+ zt change of output combination;
Zi: 1 the i-th output variable change from 0 to 1;
Zj: 0 - the i-th output variable change from 1 to 0;

101

J; - set of the prescribed input combinations occurring in a
. t

state yJ and causing the output change Zs' The elements
of J! are called J points;

T; - set of the prescribed input combinations occurring in a
state yi and inhibiting the output change Z! . The ele­
ments of T; are called T points;

F; - the output change Z! is defined by the function F; , which
is a not completely defined mapping B n

-+ Bm, where nand
m are the number of the input and the output variables,
respectively. (n = nx+ny, n = 2*nz +ny). We call it
defining Boole function, to express the relationship with
the identifying function in ARATO (1987);

F; and Fk are compatible in the theory of not completely defined
Boolean functions, if the set of the J points of F; and
the set of the T points of Fk are disjoint and conversely.
The relation between the compatibility of functions and
the compatible output changes (defined in ARATO (1987))
is treated in Section 3;

F; and Fk - Boolean functions are called disjoints if it is true that the
set of the J points of F; is a subset of the T points of Ft
and conversely.

Optimiz:;ltion of Defining Functions; Some Specialities

Generally a logic control procedure can be realized by a finite deterministic
automaton A(X, Y, Z, 8,,,), where X is the set of the input signals, Y is the
set of the states and Z is the set of the output signals. If this automaton is
a Mealy, then 8 is mapping X x.Y -+ Y describing state transitions and...." is
a mapping XxY -+ Z describing the outputs. If this automaton is a Moore,
then...." does not depend on the input, so" is a mapping Y -+ Z. In case
of two-valued realizations X, Y, Z are n x, n y, n z dimensional Boole spaces,
or their subspaces satisfying some restrictions. Correspondingly the 8 and
...." are Boolean vector-functions or systems of Boolean functions.That is,
these functions may be optimalized as a set of functions identifying output
signals. The way of the optimization of the functions 8 and...." is influenced
by the electronic elements used in the realization.

The result of the synthesis described in ARATO (1987) is an au­
tomaton B(X, y, z, p), where p is a set of identifying functions of out-

102 K. PASZTOR, VARGA

put changes Fzi :1, FZi:o, (i = 1,2, ... , n z) and of state changes FYj=l, FYj=o
(j = 1,2, ... , ny) belonging to different states. We regard the vector func­
tion X X Y X Z -t y X Z defining the output changes and the state change.
Then p is the output defining function. The difference between the output
identifying function (ARATO, 1987) and output defining function is that
the state variables and output variables are handled together in the output
defining function. It can be considered that the states of the automaton
B are vectors (yS, Zi), where yS is rebuckled and Zl is memorized. Then
the number of the states of the automaton B corresponding to a state yS
is equal to the number of the different output changes of the automaton B
in the state yS. In an arbitrary state (yS, Zl) the yS marks the Mealy state
yS and Zl is an output combination from which a Zr output change exists
in the state yS. Consequently p is a vector function giving the condition of
the transition from the vector (yS, Zl) to the vector (yj, zm). Later on p
is denoted by Ft because the output change Zr is described by Flm.

In ARATO (1987) the identifying functions Ft are optimized directly.
In ARATO (1988) these functions are grouped according to the states yS
before the optimalization, since memory elements enabled by states are
used in the realization. Heuristically in this grouping the number of input
variables is less than originally and the exponential growth of the number
of the necessary memory units can be reduced significantly.

Furthermore, we deal with the optimalization under input-output con­
straints of the Boolean vector functions giving a mapping B n

-t Bm. Our
aim is to elaborate an optimal realization of the function p, belonging to
the automaton B (ARATO, 1987), with memory elements enabled by states.
The catalogue of the memory elements is given.

Remark 1. In general the defining functions Fr are not completely deter­
mined. Their values are given in the points J and T (ARATO, 1987, 1988),
or in the points 1 and 0 (PASZTORl'iE-VARGA, 1987) according to another
terminology. The synthesis in ARATO (1987) gives the points J and T.

Remark 2. Let (yS, Zl) and' (yS, Zk) denote two different states of the
automaton B with a common state component yS . In such states there
are no constraints concerning the disjunctivity of the set of J points of the
defining functions belonging to different output changes. Since in a given
state of a Mealy automaton an input combination determines the output,
in the states (yS, Zl) and (yS, Zk) the defining functions Ft and F[may
be compatible only in case of compatible output changes (ARATO, 1987).

Remark 3. There are no constraints concerning the compatibility of the
defining functions F1

m and Ft; belonging to the states (ysZI) and (yt, Zk),
where yS and yt are different Mealy states.

A MICROPROGRAM DESIGN METHOD 103

It follows from remarks 1 and 2 that it is worth optimizing together
only defining functions belonging to different states with a common state
component yS, which are compatible.

Consequences of the Realization

Let Vi = (Xil, ••• , Xiq) denote the set of variables appearing in the prime
implicants realizing the defining functions belonging to the state yi. Let
Ki = (kil' ... , kik) denote the set of the output changes and state changes in
the state yi. For a memory element enabled by the state yi, the number of
the address lines may not be less than iq and the number ofthe output lines
may not be less than ik. In the realization, all variables Xit correspond to
an address line Cj and all output changes k is correspond to an output line.
A prime implicant associates a deterministic value only with those address
lines which correspond to variables appearing in the prime impiicant. In
principle to realize a piime implicant relating to the set Vi it is necessary to
give all possible combinations of 0.1 to the address lines corresponding to
the variables not appearing in the prime implicant. In the given state, all
prime implicants define one output combination change. For the addresses
realizing the prime implicant, the output lines corresponding to output
variables affected by the above output change have the value I, the others
in Ki have the value O.
Example 1. (The T points are not marked)

Table 1
Prime implicants corresponding to the output changes

1.

..
L..

3.

Prime implicants

Xj 'X2

Output changes
z 1 : 0 l Z3 : 1, yk

=j : 1, =3 : 1
=1 : 1, =4 : 0

j - points
Xj,X2 X 3 X 4 X S

Xj,X2,X3 x 4 x S

Xl -'X2I'3 -,x4 X5

Xj X 2 X 3 X 4 x S

-,xl x 2 x 3,x4 x 5

xI X 2-'X3 X 4 x S

The synthesis procedure described in ARATO (1987) guarantees that if in
the cases marked by * the output changes are not contradictory (parallel
output changes (.-\RATO, 1987)), then in the realization the row appears
once in which the output combination is the union of the original ones.
The merged row is:

* 1111 0 1 1 1 0

3 Periodica Polytechnic a Ser. El. Eng. 34/2

104 K. PASZTOR.VARGA

Table 2
Correspondence of variables, correspondence of values of the

prime implicants A), and their microprogram (realization) B):

Address lines Output lines Output
change

1 2 3 4 5 1 2 3 4 5 6 7 8
variables 1 2 4 5 - Zl : 0 Z4: 0 Zl: 1 Z3: 1 yk

l. 10-- 1 0 0 1 1
2. 1 1 1 - 0 0 1 1 0 A)
3. -1 - 1 0 1 1 0 0

l. 100 0 1 0 0 1 1
1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 0 1 1
1 0 1 1 1 0 0 1 1

2. 1 1 1 0 0 0 1 1 0

* 111 1 0 0 1 1 0 B)
3. 010 1 0 1 1 0 0

1 1 1 1 0 1 1 0 0
1 1 0 1 0 1 1 0 0 .1

* 1 1 1 1 0 1 1 0 0

In our case, the following two statements are true related to the realization.
Statement 1. If V = (Xl, ... , Xr) is the set of the variables occurring in
the conjunctions PI, .. , Pi, then the realization of a Pi, 1 <= i <= j, relating
to the set V is equivalent to the set of all 0.1 sequences of length r covering
at least one J point covered by Pi, too.
Proof. Because of the construction, all points J of the conjunctions
PI, ... , Pi are covered at least by one sequence 0.1. Applying statement
1. the microprogram in example 1 contains only the rows marked with ~.

Statement 2. If F; and Fk are disjointed, then in their realization relating
to the set V of the variables occurring in their prime implicants, there is
no common 0.1 sequence.
Proof. If the statement is no~ true then there are such Pi --+ F; and Pi --+ Fk
that their common variables are negated equally. The common sequence
obtained covers J points belonging to F; and J points belonging to Fk,
too. This contradicts the fact that F; and Fk are disjointed.

As the defining functions belonging to not compatible output changes
are disjointed, the realization described in statement 1. gives a suitable
result.

In case of the realization with memory elements (microprogram), the
aim of the function optimization is not the reduction of the number of the
prime implicants, but the reduction of the number of different variables
occurring in prime implicants necessary to the realization.

A MICROPROGRAM DESIGN METHOD 105

Because of the input-output constraints it can happen that more than
one memory element is needed to realize a defining function. In this case,
a signal controlling an output variable may appear in different memory
elements. In the realization they are connected with a common wire. As a
wire cannot receive more than one signal at the same time, it is necessary
to assure the disjunctivity of the sets of J points of the function covered
by the parts realized in different memory elements.

When the number of the input variables exceeds the input constraint,
the conjunction of some input variables may be connected to the enabled
input. To reduce the size of memory needed, it is suitable to analyse the
disjunctive normal form of F;. As in ARATO (1987), (1988) the identifying
functions define the output change, two defining functions belong to one
output. One of the defining functions determines the change 0 ~ 1 and the
other the change l~O (Fig. 4 in ARATO (1988)). Then the number of the
defining functions is twice the number of the output variables.

A Procedure to the Realization with MenlOry
Elements Enabled by the Group of States

The realization with memory elements enabled by the state may be ex­
tended to the realization with memory elements enabled by the group of
states (by the disjunction of the states) if the J points of the defining func­
tion F; belonging to the states connected to the enabled input are the
same.
We have to solve three problems in the procedure:

1. Find all minimized disjunctive normal forms of the different defining
functions F; belonging to the states. Select the minimal forms of the
defining functions F; belonging to one state in which the number of
variables is minimal.

2. Select the group of states to enable memory elements. Point out
the defining functions f; which are realized in the memory element
enabled by this group of states.

3. Adequately select the enabling input variables.
Remark. If we determine the minimal number of variables to the real­
ization of all defining functions F;, then that is a post investigation of the
specification. That is, if the automaton may be realized with fewer input
variables than it was prescribed in the specification, then there is another,
more effective specification, too.

The procedures developed to solve the different problems are illus­
trated on an example of AR.UO (1987, 1988).

3*

106 K. PASZTOR. VARGA

Table 3
The sets J;:' and T;:' obtained by the synthesis (ARATO, (1987), p. 136)

Current
state

J and T points

(J;:' , T;:')(5)

Jr = {X2} Tl = {X3,X6,X4,Xl,Xi,X5}
Jf = {X3} Tl = {X2,X6,X4,Xl,X7,X5}
Jf!1 = {X4} Tf/1 = {X2,X3,X6,Xl,X7,X5}
J~/2 = {Xi} T?/2 = {Xl,X5,X6,X2,X3,X4}
Jj={Xl } Ti = {X7,X5,X6,X2,X3,X4}
Ji = {X5} Tt = {X7,Xl,X6,X2,X3,X4}

Jl = {X4} Tt = {X7 ,Xl ,X6 ,X5}
Jl = {Xl} Tl = p:7,X6,X5,X4}
Jz = {X6} T2 = {X4,X5,X7,Xl}

Jj = {X5} Tt = {Xl,X2,X3,X\X6,X7}

Table 4
Prescribed input and output combinations

X Xl Xz X3 X4 Xs X6 X7

Xl 0 0 1 0 0 0 0
X2 1 0 1 0 0 1 0
X 3 0 0 0 0 0 0 1
X4 1 0 0 0 0 0
X5 1 1 0 1 0
X 6 1 1 1 1 0
X7 1 0 1 1 1 1

Z =1 z2 =3 z4

Zl 0 1 0 0
Z2 0 0 0 1
Z3 0 0 1 0
Z4 0 0

Next
state

(yi)Ct)

y3
y3

y2

y3

yl

y2

Ad 1. By applying the procedure described in P'-\SZTORNE-Y.-\RGA (1987)
all prime implicants of the functions F; are generated. These are listed
in Table 5 according to the order in Table 3. In case of this example the
functions may be realized with any of their prime implicants.

If the above covers are available, then a covering problem must be
solved, which is the search of the forms of the defining functions F! be­
longing to a given state which contain a minimal number of variables.

Ff:
Ft:
F1/1 :

F1/2 :
F~ :
Fi. 3 .

F 3 •
4 .

A MICROPROGRAM DESIGN METHOD

Table 5
Defining functions

{~X5X6' XIX3~X5,~X2~X4X6,~X2X6~Xi,Xl~X2X3~Xi,Xl~X2X3~X4}

{~Xl~X3, ~X3~X5, ~XIXi, ~X4X7, ~X5X7, ~X2X6X7}

{Xl~X3, ~X3X5, ~X3~X7, ~X2~X4X5, ~X4X5~X6, X5~X6~X7,
Xl~X4~X6, Xl~X2~X6, Xl'X6~X7}**

{~X2X4' ~X2XS, ~X2X7, X4X6, X6 X7}

{X2~X4' X2X6, X2~X7, X3,X4XS, ~X4XSX6, XSX6~X7,X3X5'X7}***
{~XIX3, 'Xl~X7, ~X5~X6~X7, ~X2X3~X6, X3~X4~X6,X3~X5~X6,
X3~X6~X7} *

{,X3, Xa'X2,X4, ,Xl,X2,X7, Xl,X4,X6, Xl,X6,Xj, XS,X2,X4,

~Xl~X2~X7, Xl~X4~X6,Xl~X6~X7}**

{~Xl' ~X5, X3,X6, ~X2X3~X4, ~X2X3~X7}*
{X2X4, X2,X6, X2X7,X4~X6, ~X6X7, XIX3~X6, X3X5,X6}

107

The algorithm begins with a table (Tl) in which the input variables
are associated to the columns. The rows are associated to the prime impli­
cants of the functions. In the row of a prime implicant there is a + in the
columns of the variables occurring in the prime implicant (Table 6).

In the table Xi is designated by i and the variables occurring in a prime
implicant are given by the list of the indices of the variables occurring in
it. The table (Tk), k 2, '" n, is constructed from (Tk-l) in the third step
of the algorithm. The sequence (i l , '" in) below the sign (Tk) shows the
variables selected during the construction of (Tk).
The algorithm

O. k:=O.
1.- Search for variables occurring alone in a row of (Tk). If there are such

variables, then select only one from a cover of an F!. Then step 3
follows.

2. Search for a column of (Tk) which contains for maximal number; of
F! the sign +. If there are such columns, then choose only one and
select the variable belonging to this column.

3. k := k + 1. Generate a new table (Tk) in which the columns of the
selected variables do not appear. For functions with prime implicants
having selected variables cancel all prime implicants not containing
selected variables and cancel the selected variables from the other
prime implicants. There is no change in the subtable, if the prime
implicants of a function do not contain selected variables. If the new
table does not contain any columns, then the set of the selected vari-

108 K. PASZTOR.VARGA

Table 6
Functioning of the algorithm

(T1)

123 4 567
5,6 - - - - + + - -
1,3,5 + - + - + - - -
2,4,6 - + - + - + - -
2,6,7 - + - - - + + 2,6
1,2,3,7 + + + - - - + 1,2,3
1,2,3,4 + + + + - - - -
1,3 + - + - - - - .-
3,5 - - + - + - - -

(T2)
(7)

1 2 3 4 5 6

-+---+
+ + + ---

I (T3)
(6)

1 2 5

2-+-
-

(T4) (T5)
(5) (2)
2

Ft
2+ x

1,7 + - - - - - + 1 + - - - - - - Ft
4,7 - - - + - - + 4 - - -+ - - -
5,7 - - - - + - + 5 - - - - + - -
2,6,7 - + - - - + + 2,6 - + - - - + 2 - + - 2 + x

1,3 + - + - - - - -
3,5 - - + - + - - -
3,7 - - + - - - + 3 - - + - - - -
2,4,5 - + - + + - - -
4,5,6 - - - + + + - - F1/1
5,6,7 - - - - + + + 5,6 - - - - + + 5 - - + x

1,4,5 + - - + - + - -
1,2,6 + + - - - + - -
1,6,7 + - - - - + + 1,6 + - - - - + 1 + - - -
2,4 - + + - - - -
2,5 - + - - + - - -
2,7 - + - - - - + 2 - + - - - - -
4,6 - - - + + - -
6,7 -----++ 6 -----+ x
2,4 - + - + - - - -
2,6 - + - - - + - -
2,7 - + - - - -..,. 2 -+---- -
3,4,5 - - + + + - - -
4,5,6 - - - + + + - -
5,6,7 - - - - + + + 5,6 - - - - + + 5 - - + x
3,5,7 - - + - + - + 3,5 --+-+- -
1,3 + - + - - - - -
1,7 + - - - - - + 1 +----- -
5,6,7 - - - - + + + 5,6 ----++ 5--+ x
2,3,6 . - + + - - + - -
3,4,6 - - + + - + - -
3,5,6 - - + - + + - -
3,6,7 - - + - - + + 3,6 - - + - - + 3 - + - -

A M1CROPROGRAM DESfGS METHOD 109

abIes are sufficient for the realization. The algorithm ends. Otherwise
step 1 follows.

For the defining functions FI belonging to state 1, the table (T1) and the
functioning of the algorithm is illustrated in Table 6.
According to the result, all functions belonging to state 1 can be realized
with the variables X2, X5, X6, X7. Table 7 shows this:

Table 7
Realization of functions in state 1

column (A) the minimal forms of the functions
column (B) the realization in case of four address lines
column (C) the output changing belonging to the functions

(A) (B) (C)
F2

I == -'X2X6 'Xi ,x2-'xSX6,X7 Z2 : 0 Z4 : 1
F3

1 = -'X2 X 6 X 7 -'X2'X5 X 6 X7 Z2 :0 "3 : 1

Ft / 1 = Xs -,x6 -'X7 -'X2 x S -'X6 'X7 z4 :0 ::3 : 1

Ft /2 = X6X7 -'X2 X 5 X 6 X 7 ::4 :0 z3 : 1
y!

2 = XSX6-'X7 XZXSX6-'X7 ZI : 1

F3 = -,xS'X6,X7 -'X2 ,X5 ,X6 -'xi z3 :0 z2 : 1

y3

y3

y2

Ad 2. A memory element may be enabled by a group of states, if the
functions realized in it are defining functions in all states from the group
and all functions affect the same output changes. In our example, if the
memory element realizes F:j /1 from state yl and Fi from state y2 v,rith the
output changes z3:1,z4:0,y3 then the memory may be enabled by y 1Vy2.
Ad 3. If the necessary number of inputs exceeds the input constraint by n q ,

then it is useful to select nq columns in which there are minimal numbers
of different 0.1 combinations. The enabling variables are the variables
belonging to these columns. The needed memory number ahead of 2nq

IS

the number of the appearing combinations.

An Illustration

We show realizations for the above example. The constraints: input num­
ber may be maximum 12, output number may be maximum 8.

Table 8 shows in any state the groups of input variables, which are
suitable to realize the defining functions. As it is easy to see for all states
two groups of variables may be suitable. In version 1 the group consists
of 2,3,4,5,6 and in version 2 the group consists of 2,3,5,6,7. In Table 8 the
rows belonging together are marked with the version numbers.

110 K. P;'SZTOR- VARGA

Table 8
The variables needed in the states

state 1 2 3 4 5 6 7 versIOn
1 + + + + 2

+ + + + 2

+ + + + + 1

2 + + +
+ + + 2

+ + + +
+ + + + 1

+ + + +
3 + +

+ + 1,2

+ +
+ + +
+ + +

+ + +
+ + +

Table 9
Version 2 with the variables 2,3,4,5,6

memory 1 enabled by state 1 function
23456 Z2 : 0 Z3 : 0 Z4 : 0 Z2 : 1 =3 : 1 Z4 : 1 y3

12345 1 2 3 4 5 6 7 yl(-'X5 X6 V

01001 1 0 0 0 0 1 0 F2
1 -'X3-'XS V -'X3XSV

00001 1 0 0 0 1 0 1 F3
1 -'X2X4 V

00010 0 0 1 0 1 0 1 Fi/1 -'X2X3 -'X6)

01111 0 0 1 0 1 0 0 Fi/2

01000 0 1 0 1 0 0 0 Fj
memory 2 enabled by state 1

23456 Zl : 1 y2

12345 1 2 yl X2-'X4

11 0 11 1 1
memory 3 enabled by state 2

23456 Zl : 0 Z4 : 0 Z3 : 1 yl y3

12345 1 2 3 4 5
00010 1 1 1 0 1 F; y2(-'X3 V X3-'X6 V X2X4)

01000 1 0 0 0 0 F2
4

11110 0 0 0 1 0 F2

memory 4 enabled by state 3
23456 Z3 : 0 Zl : 1 Z4 : 1 yZ
12345 1 2 3 4 y3 XZ-'X4

11 0 11 1 1 Ft

A MICROPROGRAM DESIGN METHOD 111

As the post-investigation of the specification, Table 8 shows that
ahead of the original seven variables five variables are enough to specify
the task. The variable Xl can be cancelled and one of the variables X4 ,X7

can be cancelled, too.
In our example the input constraint does not cause a problem. In

state 1, the number of output changes is 9 (Table 7), then due to the output
constraint, the defining functions in state 1 are not realizable with one
memory element. As Fi in the state 1 and Ft in the state 2 are compatible,
the problem is solved by their realization with a memory element enabled
by yl Vy3 , where the outputs are Zl: 1, y2 (version 1). In our example the
solution is simpler if the defining functions in state 1 are realized with two
memory elements (version 2).

In version 1, the number of the realizing memory is greater by 1, but
in another case, the above type of realization may be more effective.

Conclusion

A special method is elaborated for minimizing the number of variables
needed in the realization of Boolean functions. The realization with mem­
ory elements causes constraints of the number of the input and the output
variables. Such constraints and other specialities of this realization are
taken into consideration. As a consequence of the algorithm minimizing
the number of input variables a post qualification of the specification is
obtained.

References

ARATO, P. (1987): Specification and Realisation of Logic Control Procedures on the Ba.sis
of Prescribed Input-Output Changes. Periodica Polytechnica Se'i'. El. Eng. Vo!. 3l.
Nos. 3-4, pp. 99-153.

ARATO, P. (1988): Design of Microprogrammed Control Units Csing Separate Micro­
program Fields Enabled by States. Periodica Polytechnica Ser. El. Eng. Vo!. 32.
Nos. 2-4, pp. 97-110.

PASZTORNE VARGA, K. (1987): A Boole fuggvenyek Boole algebrajanak strukturalis tulaj­
donsagait felhasznal6 Boole fuggveny optimalizaci6s m6dszer. Aikalmazotl Mate­
matikai Lapok 13 (1987-88) pp. 69-96. (in Hungarian)

Address:

K. PASZTOR-VARGA

Computer and Automation Institute
P. O. Box 63, Budapest, Hungary
H-1502

