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Abstract 

This paper describes a constructive algorithm for performing the qualitative simulation of 
continuous dynamic systems. The algorithm may be thought of as the qualitative analogue 
of conventional numerical simulation. The equations of the system model are causally 
ordered to improve the efficiency of the algorithm; this also facilitates the production of 
causal explanations of system behaviour. We introduce the notion of 'differential planes' 
to allow the system model to be repeatedly differentlated. An additive input function is 
described by piecewise singularity functions and the algorithm includes the appropriate 
level of differential plane to remove the qualitative ambiguity. In this way the algorithm is 
able to cope with inputs as functions of time. We illustrate the application of the algorithm 
to a number of examples, and show that it overcomes some problems encountered with 
the non-constructive approach. 

Keywords: causal ordering, differential planes, qualitative ambiguity, qualitative reason­
ing. 

Introduction 

This paper describes a novel algorithm for performing the qualitative sim­
ulation of continuous dynamic systems. This 'Predictive Algorithm' forms 
the outer module of the system architecture described in CWIEGAND, 1989), 
and replaces the Predictive Rules module in the earlier design of the Pre­
dictive Engine. The algorithm is coded in Prolog. 

The Predictive Algorithm uses a well-defined notion of system causal­
ity, familiar (and intuitive) to systems engineers. This notion of causality 
forms the basis of Iwasaki's work on causal ordering (IWASAKI, 1988). The 
algorithm is 'event-based' and uses the notion of 'persistence': an event is 
assumed to persist until another event causes it to change. For this reason 
we call the algorithm consiructive. 

We contrast our algorithm with the non-constructive approach used 
in the QSIM algorithm (KUIPERS, 1986). At each new state generation in 
QSIM, every possible (in a local sense) qualitative transition of each sys-
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tem variable is considered. QSIM then refutes impossible (in a global sense) 
transitions of the system considered as a whole by applying a succession of 
filters. A phenomenon known as 'chattering' (KUIPERS, 1987) has been de­
scribed and investigated in the QSIM algorithm. We claim that chattering 
can be split into (at least) two quite distinct phenomena and that in one 
case it is the non-constructive nature of QSIM that causes chattering. Lo­
cal transitions are considered that cannot be filtered by global information. 
We contend that the consideration of all local transitions is unnecessary if 
the correct transition can be inferred constructively. 

The Predictive Algorithm separates constructive inferences about the 
system behaviour into three temporal categories. Those events that will 
occur instantaneously are discovered by a phase termed 'Causal Propaga­
tion'. Events that will occur after infinitesimal time are found by a phase 
termed 'Qualitative Integration'. Lastly, those events that may occur after 
some finite time are also found by Qualitative Integration, but since the 
results are hypothetical further investigation is required by a 'Transition 
Analysis' phase. The algorithm terminates when it deduces that equilib­
rium has been reached. This process may be thought of as the qualitative 
analogue of conventional numerical simulation. 

In some respects the Predictive Algorithm is similar to TQA 
CW1LLIAIVIS, 1984). However, it differs from TQA in important ways. The 
Causal Propagation phase uses a fixed notion of system causality with a 
consequent improvement in efficiency. The Transition Analysis phase calls 
the Predictive Algorithm recursively, avoiding the need for separate rules 
of Transition Ordering. By comparison with the work of DE KLEER and 
BOBROW (1984) the Predictive Algorithm treats asymptotic transitions to 
equilibrium in the same way as finite time transitions (although technically 
these would constitute discontinuous behaviour). We also introduce an 
explicit notion of 'differential planes' to avoid qualitative ambiguity around 
feedback loops with additive inputs. 

Differential planes allow the system model to be differentiated re­
peatedly so that input functions described by piecewise singularity func­
tions (D'Azzo and HOUPIS, 1981; OPPENHEIM et aI, 1983) can be consid­
ered. The qualitative model of the system includes the order of differential 
plane that removes the qualitative ambiguity introduced by the additive 
input function. The Predictive Algorithm is called whenever the descrip­
tion of the input function changes. We assume that all changes to the 
input description are left-continuous (Heaviside). Differential planes also 
allow higher-order information about the functional relationships between 
system variables to be used. 

The next section describes the various phases of the Predictive Algo­
rithm. The results sections that follow are used to illustrate some of the 
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features that have been discussed in this paper. An appendix shows how 
the phases of the algorithm construct the qualitative behaviour for one of 
the example systems considered. 

The Predictive Algorithm 

The Predictive Algorithm consists of three separate phases. A flowchart 
for the algorithm is presented in Fig 1. An 'event' in the algorithm is a 
tuple consisting of the qualitative value (for simplicity, either +, 0, or -) 
of a system variable and the time duration for which the variable held that 
value. An event 'persists' if the end point of its duration is not yet known. 

The Causal Propagation phase of the algorithm is responsible for in­
ferring new events that will begin at the same time as the antecedent 
events (viewing qualitative arithmetic as an inference process). Events cre­
ated during this phase begin instantaneously in response to the persisting 
events used to make the inference. Causal Propagation differs from the 
more usual 'constraint propagation' in that it assumes that the equations 
describing the qualitative model of the system have been manipulated into 
an ordered sequence that permits an intuitive interpretation of causality. 
Each equation of the model is rearranged so that the variables appearing in 
the right hand side of the equation cause the single variable that appears 
on the left hand side. Also, the equations themselves are ordered into a 
sequence 

{el,e2, ... en } 

so that for any equation ei, the left hand variable of ei does not appear 
in the right hand side of any ej, 1 ~ j < i. Causal Propagation treats each 
equation as an inference rule to determine the instantaneous value of the 
left hand variable, and proceeds linearly through the equation sequence. 
This process is directly analogous to the way that system equations are 
rearranged for the operation of computational algorithms in conventional 
numerical simulation. In the Predictive Algorithm, 'causality' is the normal 
system theoretic notion as understood by users of block diagram notation 
for describing models of physical systems. The method used for determin­
ing this causality is based on the dynamic causal ordering algorithm of 
IWASAKI (1988). This provides the information needed to rearrange the 
equations into the above 'qualitative structural equations'. 

TQA (vVILLIAMS, 1984) also uses a phase termed 'Causal Propaga­
tion'. However, Causal Propagation in TQA appears to search for an ap­
propriate equation at each inference step. Our Causal Propagation is able 
to exploit system causality to a greater extent since the ordering of the 
equations means that the phase can be completed in a single linear pass 
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Fig. 1. Flow chart of the predictive algorithm 

(without searching). This appears to be much more efficient than in TQA. 
In addition, the process of Feedback Analysis in TQA occurs automatically 
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in our Causal Propagation by virtue of the ordering of the equations and 
the use of higher-order differential planes. 

Continuous dynamic systems store energy, i.e. they have memory. 
This energy is released to produce the behaviour of the system. In form­
ing dynamic analytic models of such systems, we often model this ability 
to store energy using the time-integral primitive. The effects of integra­
tion then model the storage and release of energy in the system. In our 
qualitative structural equations, we say that any differentiated variable in 

I 

the model, such as V , will effect its base variable, V, via the process of 
Qualitative Integration. The events inferred by the phase of Qualitative 
Integration are considered to begin some time after the start of the per­
sisting events used to infer those new events. For example, if V is 0 and 
V'is +, then V will become +. 

Qualitative Integration characterises the algorithm as one able to pre­
dict continuous dynamic behaviour by providing a means of using the in­
formation contained in a dynamic modelling primitive (here differentiation 
or integration). The Qualitative Integration phase is genuinely causal. In 
physical systems, causality is always considered to be directed from the 
integrand to the integral, reflecting the dissipation of energy in the system. 
It is the nature of this phase in particular (though also our implementa­
tion of Causal Propagation) that characterises the Predictive Algorithm 
as constructive, as opposed to a non-constructive algorithm such as QSIM 
(KUIPERS, 1986). Qualitative Integration is linear in the number of differ­
entiated variables in the model (including all differential planes). 

A new event inferred by Qualitative Integration could occur after 
I 

some infinitesimal time has passed, e.g. V = 0 and V = + implies V = + 
after infinitesimal time. However, the new event might occur after some 
non-infinitesimal (but finite) time has passed, e.g. V = + and V' = - im­
plies V = 0 after finite time. (Note that we treat asymptotic changes, i.e. 
new events after infinite time, as though they were finite time changes). 
In the latter case, there is the possibility of another event starting before 
the new event, and this might actually prevent it occurring at all! There­
fore, Qualitative Integration is separated into the creation of new events 
after infinitesimal time, and the possibility of new events after finite time. 
The latter case is called Transition Recognition. If there are more than 
one new events possibly starting after finite time, then we must deduce 
which will start first. The task of determining which of the hypothesized 
events starts first is performed by Transition Ordering. Transition Recog­
nition and Ordering together form the Transition Analysis phase. The only 
method we have of determining the subset of hypothesized events that will 
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occur first is 'generate-and-test'. Transition Recognition generates the pos­
sibilities, and Transition Ordering tests to see if a valid dynamic behaviour 
is produced. We take our terminology from Williams who first used this 
two-phase notion of Transition Analysis (WILLIAMS, 1984). 

Transition Recognition takes a list of possible transitions (hypothe­
sized events) and produces the power set of these transitions. It orders the 
subsets in the power set in accordance with two heuristics. The first is that 
the subsets are arranged in increasing size (least commitment). The sec­
ond principle employed in ordering the subsets is that the lowest-order state 
variable transitions should be considered first (DE KLEER and BOBROW, 
(1984) only consider these). The computation of subsets for consideration 
by Transition Ordering indicates that this phase is of exponential com­
plexity. The only way of alleviating the problem (apart from the heuristic 
methods above) is to cut down the exponential term, i.e. the number of 
possibly transitioning variables returned from Qualitative Integration. The 
way this is done in the Predictive Algorithm is by 'dynamic plane switch­
ing'. This is the technique of ignoring higher-order differential planes when 
they will contribute no more information to the simulation. By utilising 
dynamic plane switching and the two heuristics mentioned above it is al­
ways possible to reduce the exponential term to the order of the system 
model. 

Transition Ordering calls the Predictive Algorithm itself recursively 
to perform the analysis, trying to discharge the assumption made by Tran­
sition Recognition. TQA CWILLIAMS, 1984) has a separate analysis phase 
to do this, but DE KLEER and BOBROW (1984) use a similar recursive 
scheme. The testing of whether the results of the Predictive Algorithm are 
consistent with the behaviour of a dynamic system is left to the following 
rules. The first rule is that non-causal inferences are not allowed. This 
means that inferences in Causal Propagation cannot effect a variable's his­
tory. The second rule disallows discontinuous behaviour, and in particular 
is concerned with finding prior events. A prior event is found if the rules of 
continuity demand that the transition being considered must be preceded 
by another transition. Finally, the third rule concerns one way in which 
QSIM may start 'chattering' (KUIPERS, 1987). In certain coupled systems 
we find that the transition of one state variable derivative without the 
others causes an oscillation. This sort of oscillation is disallowed as being 
an impossible behaviour; it occurs when there is a 'qualitative symmetry' 
between state variables. Note that we have identified two quite separate 
phenomena that cause chattering in QSIM: firstly, the non-constructive na­
ture of the algorithm, and secondly, the genuine problem of qualitatively 
symmetric systems. We contend that QSIM's method of avoiding these 
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phenomena is not sufficiently' general (this was also a conclusion of DALLE­
MOLLE (1989)). At present, we are only able to formally justify the third 
rule for linear models of physical systems. One way of extending the justifi­
cation is to use a qualitative version of the Euler-Cauchy method (HENRICI, 
1964); in fact, this is the principle behind QSIM's use of the 'Smoothness 
Assumption' to avoid the problem of chattering. 

Simple Water Tank with Laminar Flow 

Area, A 

Volume, V 

Fig. 2. Simple water tank 

The physical system consists of the simple water tank shown in Fig. 2. We 
will assume that there is laminar flow at the output qo . This is modelled 
by a linear relationship between the height of fluid in the tank ~ and the 
output flow qo. We therefore have the following system model: 

where p is the density of the fluid, 9 is the acceleration due to gravity, 
and R is the laminar fluid resistance. We wish to supply an input flow qi 



186 M. E. WIEGAND 

described by a linear ramp over time. We model this as a step change to 
g; (with g;' held constant at 0). 

The process of developing a qualitative model of this system is difficult 
to formalise (and therefore difficult to automate). Firstly, we differentiate 
the system model to derive the appropriate differential planes for the order 
of the singularity function that describes the additive input gi. Each 
plane is then subjected to the causal ordering algorithm and the equations 
rearranged into a list of qualitative structural equations. For clarity of 
exposition, we will ignore constant parameters in the model. Finally, we 
obtain the following qualitative model: 

Plane 0: 
[gol = [vl , 

Plane 1: , , 
[gol = [v] , 

11 I I 

[V ] = [giJ - [go] . 

Plane 2: 
11 11 

[gol = [V ] , 
1/1 11 11 

[V ] = [gil- [go] . 
, 

The linear ramp, modelled as a step change to gi , is applied at (symbolic) 
time tl. Fig. 3 shows the resulting qualitative behaviour predicted by the 
algorithm as the response of the laminar tank model to the ramp. Note 
that after the initial transient between times tl and t2, the system reaches 
an equilibrium condition where the responses of the state variable V and 
the output go are linear. The appendix shows the constructive effect of the 
three phases of the algorithm: Causal Propagation, Qualitative Integration, 
and Transition Recognition. 

Simple Water Tank with Turbulent Flow 

The physical system is the same as before (see Fig. 2), but now we will 
assume that there is turbulent flow at the output go. This is modelled by 
a non-linear relationship between * and go. We have the following system 
model: 
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Fig. 3. Response of laminar tank model to ramp 

I 

V = qi - qo , 

where Cd is the flow coefficient at the output aperture, and a is the area of 
the aperture. We differentiate and simplify to obtain the following quali­
tative model: 

Plane 0: 
[qo) = [V) , 

[V') = [qd [qo) 

Plane 1: 
I I 

[qo) = [V] , 

Plane 2: 
11 11 I 

[qo] = [V ]- [V ] , 
1/1 1/ 11 

[V ] = [qi ] - [qo] . 

Note that the non-linear square root relationship has introduced a structure 
into plane 2 (we have applied a heuristic to handle the zero denominator). 
This higher-order information would not be available to an algorithm such 
as QSIM that only supports basic 'weak' functional primitives. However, 
since we have an explicit notion of differential planes, we can use these 
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planes to hold the additional information that is available about the rela­
tionship between * and qo. 

The linear ramp, modelled as a step change to q; , is applied at (sym­
bolic) time tl' Fig . .4 shows the resulting qualitative behaviour predicted 
by the algorithm as the response of the turbulent tank model to the ramp. 
Note that after the initial transient between times tl and t3 , the system 
reaches an equilibrium condition where the response of the output qo IS 

linear, but the response of the state variable V is non-linear. 
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Fig. 4. Response of turbulent tank model to ramp 

Two Coupled Water Tanks 

The physical system consists of an arrangement of two coupled water tanks 
shown in Fig. 5. We use the following system model: 

qo = CdoaoV2gH2 , 

HI _ qi - ql 
I - Al ' 

H; = ql - qo 
A2 
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Fig. 5. Two coupled water tanks 
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We wish to supply an input flow qj described by a step change over 
time. We model this as a step change to qj (with q{ held constant at 0). 
We need only derive differential planes to the appropriate level for dealing 
with the order of the input singularity function. We therefore obtain the 
following qualitative model: 

Plane 0: 

Plane 1: 

[qll = [HI]- [H2l , 

[qol = [H2J , 

I I I 

[ql] = [HIl - [H2J , 
I I 

[qol = [H2l , 

The step change to qj is applied at (symbolic) time tl' Fig. 6 shows 
the resulting qualitative behaviour predicted by the algorithm as the re­
sponse of the coupled tanks model to the step. Note that at time t4 a 
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non-constructive algorithm such as QSIM would have investigated three 
11 

possibilities for the value of H2 after t4, i.e. +, 0, or -. Without appropri-
ate filtering, the phenomenon of 'chattering' would have been encountered. 
However, in our constructive algorithm the change to H~ has been inferred 
as a result of the changing H~ and our algorithm goes on to infer that H~ 
becomes - after t4. 
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Fig. 6. Response of coupled tanks model to step 

The determination of what happens during t4 to tI4 involves finding out 
I / 

which of HI and H2 will transition to ° first. This aspect of Transition 
Analysis is unavoidably exponential; we must investigate the power set 
of possible transitions. However, notice that by our mechanism of using 
differential planes we can always limit the exponential term to the order 
of the system. Here the system is second order, and we must investigate 
22 - 1 == 3 possibilities: H~ first, H~ first, or H~ and H~ together. 

Conclusion 

We have presented a novel algorithm for performing the qualitative simu­
lation of continuous dynamic systems. The algorithm is constructive and 
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is founded on system theoretic principles. We stress the important role 
played by 'causality' in our algorithm. The notion of 'differential planes' 
has been introduced and we have illustrated how these can be used both to 
limit the exponential nature of the algorithm and to use higher-order in­
formation about functional primitives. The algorithm has been compared 
with the results of other research in qualitative reasoning. We have shown 
that it exhibits a number of advantages, not least its efficiency. 

All the results in this paper have been generated by the Prolog im­
plementation of the Predictive Engine. The particular systems presented 
were chosen for their simplicity. The algorithm has been applied success­
fully to much larger scale systems, including a laboratory system rig (with 
heat and fluid flow loops) and a full-size industrial-scale gas recirculation 
fan (part of a boiler system). The adherence to system theoretic principles 
in our approach has made the algorithm suitable for use with large-scale 
systems that can be structurally decomposed. 

The algorithm forms a module of a general architecture for a Predic­
tive Engine CWIEGAND, 1989) capable of combining reasoning with quali­
tative and quantitative information. 
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Fig. lA. Causal propagation on laminar tank model 
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