
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 34, NO. 4, PP. 233-244 (1990) 

AN APPROACH TO DEVELOP INTELLIGENT 
DIGITAL TEST SYSTEMS 

R. UBAR 

Department of Computer Engineering 
Tallinn Technical University 

Tallinn, Estonia, USSR 

Received: July 2, 1990. Revised: March 22, 1991 

Abstract 

A new test generation method is developed for digital systems on the basis of alternative 
graphs. Tests are generated using symbolic signal values and are organized in the compact 
way - in form of symbolic test programs and data arrays. A new architecture is pro­
posed for test systems which is suited for on-line generating deterministic test patterns in 
algorithmic way. Special features are implemented in test generator and tester to support 
event driven testing, which makes it possible to test dynamically devices that work at 
higher clock rates than the tester does. 

Keywords: digital systems, test generation, digital testers, alternative graphs. 

Introduction 

Automatic test equipments (ATE) can be regarded as important means 
to help improving the quality of digital devices. The development and 
application of these systems is expanding as testing requirements become 
more complex and the need for accurate and reliable test data grows. 

Today's electronic products are faster and more complex than ever. 
Most use microprocessors. As a result, traditional functional 'edge' board 
testers have reached their limits. Certain classes of faults associated with 
LSI and caused by interaction between devices have become burdensome 
for in-circuit testers to test for and detect. Internal self test is a com­
mon method of performance verification but it suffers from very limited 
diagnostic resolution. 

An innovative approach that is becoming popular is the use of 
emulator-based techniques (:rVIORRIS, 1986). The drawback of processor 
emulation is the requirement of removing the microprocessor. A newly de­
veloped emulation technique, called memory emulation, eliminates the need 
for processor removal (SARGENT, 1983) and contributes to increasing the 
diagnostic resolution. A disadvantage of the memory emulation approach 
is the lack of efficient tools for automated generation of test programs. 



234 R. UBAR 

The limitation of today's CAD tools for test generation are: they do 
not encompass a strategy for test compaction, the tests are large and un­
structured, they have no repetitive patterns, they do not make use of the 
pattern compaction facilities of testers, they also contain a lot of redun­
dancy (ALBROW, 1983). 

By FICHTENBAUM (1987) a novel approach to memory testing was 
developed which uses test pattern compaction strategy and implements al­
gorithmic test pattern generation within a tester's control structure. The 
disadvantage of this approach is the use of the same memory for the test 
program and test data that leads to the need of large random access memo­
ries. Also, no methods are proposed for automated test pattern generation. 

In this paper a new approach is proposed for testing complex digi­
tal devices. This approach integrates automated test pattern generation, 
test pattern compaction techniques supported by both test pattern gener­
ator software and test equipment hardware and emulation-based technique 
which gives the possibility to run automatically generated test patterns 
at the DUT's customary speed and in an undisturbed environment. This 
integration proved to be possible due to the introduction of a new mem­
ory pseudo-emulation approach in which the address bus of the DUT is 
not used. 

As the theoretical basis of this approach, the conception of alternative 
graphs (UBAR, 1988a) is used. Tests are generated using symbolic signal 
values and are organized in the compact way - in form of symbolic test 
programs and data arrays. A new architecture is proposed for the test 
equipment, which is suited for online generating deterministic test patterns 
in algorithmic way. Special features are implemented in test generator 
and tester to support event driven testing, which makes it possible to test 
dynamically devices that work at higher clock rates than the tester does. 

Alternative Graphs 

Alternative graphs (AG), introduced in (DBAR, 1976), were proposed at 
first to describe digital devices on the logical level. In relation to this area, 
AGs and Binary Decision Diagrams (BDD) introduced by AKERS (1978) 
nearly cover each other. AGs differ from BDDs in their ability to represent 
the structure of the original circuit (DBAR, 1981).Later, general AGs were 
introduced to describe a wide class of digital devices on the mixed logical 
and functional levels (DBAR, 1983 and 1988b). 

A given digital device will be represented by a set of AGs, where each 
AG describes one of the functions of the device. AG can be treated as 
a program for calculating values of the corresponding function. Internal 



AN APPROACH TO DEVELOP INTELLIGENT DIGITAL TEST SYSTEMS 235 

nodes in AG are marked by variables and represent conditional branches. 
The value of the node variable determines the direction of branching. Nodes 
with n-bit word variables have as maximum 2n branches. Terminal nodes 
are marked by functions, variables or constants. To each path from the 
starting node up to some terminal node corresponds a test vector and the 
function in the terminal node describes the operation mode for the given 
module, activated by the vector. 

The traditional stuck-at fault model at the gate level is replaced here 
by a more general model of stuck-at faults on node outputs. A fault can 
cause a faulty branching out of the path activated by a test vector. The 
physical meaning of faults associated with node outputs depends on the 
physical meaning of nodes. Depending on the adequacy of representing the 
structure of the DUT, the fault model proposed can cover a wide class of 
structural and functional faults introduced for digital devices at different 
levels. 

Fig. 1 shows a part of the AG-model for the output behaviour of the 
microprocessor Intel 8080. The complex variable OUT = DB.AB repre­
sents the output word of the microprocessor, where two parts, data and 
address variables are concatenated. The variables I = It . h . fa, PC, 
A, RP, L, H, I N2 and I N3 represent correspondingly, the instruction 
word (with its three fields), program counter, accumulator, register pair, 
registers Land H and the input data words loaded, correspondingly, dur­
ing the second and third machine cycles. The variable RP is decoded by 
its own AG, where the BC, DE, H L represent register pairs and BP de­
notes the stack pointer. The variable t serves to model the time; its values 
correspond to different events (machine cycles, in the case of the micro­
processor). Physically, the condition t = j means the time instant j when 
the corresponding activated path in AG actually will be carried into effect 
(the variable OUT will be equal to the value of the function in the termi­
nal node of the activated path). The formatting variable i is introduced 
with the aim of compactly describing functions for complex words (without 
using this variable we should have to describe DB and AB separately by 
different AGs). 

Bold lines in Fig. 1 denote an activated path on the AG which physi­
cally can be interpreted as a test: It = 0 & h = 4 & fa = 2 (it means if the 
instruction code is SHLD - store registers Hand L direct) and if t 4 (it 
means that the 4th machine cycle is being observed) then DB = L. Note 
that for this case only the values of I1, h and fa represent the generated 
test pattern. The condition t = 4 for this test pattern is regarded as an 
event for which the reaction of the DUT must be observed. Introduction of 
variables like t to represent specific events in the object, makes it possible 
to formalize the test generation process for the devices that contain inter-



236 R. UBAR 

11 12 13 

SHLD: loo 100 0101 

2.3 ~~ 
~ 

4.5<;) 
6.70 

Fig. 1. Alternative graphs for a microprocessor 

nal clock generators and so themselves are active in relation to the tester. 
Traditionally, automatic test pattern generators (ATPG) are used under 
the presumption that testers are active in relation to the DUT. 

Test Generation 

The process of test generation can be carried out formally on the AG 
model by activating successively all the paths on AGs so that all nodes are 
tested. The test pattern generation procedure for the node m consists of 
the following steps: 



AN APPROACH TO DEVELOP INTELLIGENT DIGITAL TEST SYSTEMS 237 

1) activating a path in the AG from the starting node up to the 
node m; 

2) activating nonoverlapping paths for each successor of m up to dif­
ferent terminal nodes; 

3) solving the system of inequalities f(mi) i= f(mj) for each pair (mi, 
mj) of terminal nodes reached at the 2nd step (here, f (m) is the function 
at a terminal node m). 

The test pattern generated will be executed cyclically for all the values 
of the variable at the node m. The algorithm described uses symbolic path 
activation and organizes the results in a compact way - in a form of 
symbolic programs and data arrays. 

The interpretation of these three steps for different classes of digital 
devices can be different. For the case of microprocessors, in the first and 
second steps an instruction sequence (test program) will be generated to set 
up the needed state of the DUT for executing the instruction to be tested 
and to observe (or to transfer for observing) the result of the instruction on 
the output; in the third step the generation of test data (a set of operands) 
takes place - these operands are needed for activating the faults under test. 

An example of carrying out the procedure described is shown in Fig. 2. 
The AG represented in Fig. 2 is equivalent to the following function: 

y= F I , if 1 = 0, 
F2, if 1=1 and Xl & X2 = 1, 
F3, if 1 = 1 and Xl =1 and X2 = 0, 
F 4 , if 1 =1 and Xl = 0, 
F5, if T =2 and X3 = 1, J. 

F6, 
·r 
11 1=2 and X3 = 0, 
if 1=3 and X,± = 1, 

Fs , ·r 
11 1 =3 and X., = O. 

Here we can have the following interpretation: Y is a word which 
represents a register in a microprocessor, 1 is the instruction word variable, 
Xi represent flags and Fj represent elementary functions (microoperations). 
The bold lines in the graph depict all the activated paths needed to test 
the faults for the output of the node 1 at the value I = 1. So, carrying 
out the first two steps of the test generation procedure results in a test 
vector T = 1l1l0 (I, Xl, X2, X3, X4). In the third step we must find the 
needed data operands for functions Fi by solving the inequalities F2 i= Pr, 
F2 i= F5 and F2 i= Fs. To test all the faults related to the node I, we have 
to solve the inequalities F2 i= FI i= F5 i= Fs and carry out a set of test 
vectors T = vaT, 1110 (I, Xl, X2, X3, X4) where vaT is an element of the set 
of values VAR =(0, 1, 2, 3). 

The following test program results from the test vector T generated: 



238 

y 

R. UBAR 

lIS) 
2~ 

~ 
1/3) 

3~ 
\0 

Fig. 2. Alternative graph for a complex function 

For all values of vaT from the set VAR, do 
1) load the needed values for Xl, where i = 1, 2, 3, 4, and for all 

registers which serve as arguments for functions Fj, where j = 1, 2, 5, 8; 
2) carry out the instructions I = vaT; 
3) observe the value Y = et, where the variable et takes the values 

from the set ET =(h, 12, is, iT), corresponding to the values vaT; here, 
by ij we denote the value of the function Fj. 

As we see, the program must be carried out cyclically for all values 
from the set VAR. Here, the values vaT and et can be regarded as symbolic 
values in the test vector for the variables, I and Y. Here, et represents 
the reference values (etalons or expected results of elementary test steps). 
During execution of the program, the symbolic values vaT and et in it will 
be replaced by the corresponding real values from the arrays VAR and ET. 

In the general case, to solve the inequalities above, we may need more 
than one set of data operands (UBAR, 1988a). From this situation, the need 
of the next level cycle (nested loop) arises. So, we have to introduce a new 
symbolic value op for data words as operands (arguments of functions Fj). 
During the execution of the test program, the values op must be replaced 
by real values of operands from the corresponding array GP. 



AN APPROACH TO DEVELOP INTELLIGENT DIGITAL TEST SYSTEMS 239 

To sum up, in the general case, the test generation procedure above 
leads to the construction of tests with a specific structure, consisting of the 
following components: 

1) test program P; 
2) data array VAR of values to modify P; 
3) data array OP of operands and 
4) data array ET of reference values (expected results of the test). 
As a result of the test pattern generation procedure described above 

we get the test data automatically in a compact form. The length of this 
structural test can be measured as 

where Lp is the length of the test program and other Li denote the number 
of data words in the corresponding arrays. For the traditional way of the 
test organization as a simple linear sequence of test patterns, we would 
have the following estimation: LT' = Lp . LVAR . Lop, for the test length 
with LT « LT,. The general test structure is illustrated in Fig. 3. 

Architecture of the Test Equipment 

A new architecture is proposed for test equipments to be used for testing a 
large class of digital devices like microprocessors, microcontrollers, POBs, 
etc. This architecture supports the approach where the off-line automated 
test data generation, test data compaction, on-line algorithmic test vec­
tor generation in the tester and memory pseudo-emulation approaches are 
integrated. 

To minimize testing costs, the tester's throughput must be maximized 
by reducing the most limiting factor, the time involved in downloading the 
test pattern data from the system controller's disc memory to the test 
station electronics. A traditional architecture of the past would typically 
address these problems by using more and more expensive high-speed RAM 
to store a greater number of test vectors. This results in high hardware 
cost and poor system throughput due to the large amount of test pattern 
data downloaded. 

This paper proposes a new architecture (Fig. 3) to support the pat­
tern compaction strategy, which is based on the structure composed of a 
test program and of three different data memories. By this architecture 
large complex test pattern sequences can be created from less downloaded 
information. The principles implemented in the architecture result from 
the test structure which was developed in the previous section. 



240 R. UBAR 

Tes t program Data 

P OP 

Initialization 
sequence 

Fig. S. General test data structure 

This paper proposes a new architecture (Fig. 3) to support the pat­
tern compaction strategy, which is based on the structure composed of a 
test program and of three different data memories. By this architecture 
large complex test pattern sequences can be created from less downloaded 
information. The principles implemented in the architecture result from 
the test structure which was developed in the previous section. 

The role of the test equipment lies in the execution of the second part 
of the test generation process - e.g. in the on-line test pattern generation 
from the test data produced off-line in the way which was described in the 
previous section. Note that an arbitrary digital device can be represented 
by alternative graphs. So, the intermediate form for representing test data, 
proposed here and to be generated off-line on the basis of AG-model, can be 
regarded as a general form for a wide class of digital devices. Hence, it can 
be concluded that the algorithmic on-line test pattern generation method 
implemented in the test equipment is also general - it can be used fQr a 
wide class of digital devices, including microprocessor based devices. 

Traditionally, algorithmic test generation strategies supported by­
hardware were used only for the case of random testing or for the case of 
simple and regular objects like memory devices, timers, counters, shifters 
with very simple deterministic test algorithms but not for general case, for 
example, microprocessors. 



AN APPROACH TO DEVELOP INTELLIGENT DIGITAL TEST SYSTEMS 

\11 

\11 
- >. c­
<IJ 0 
> c wo 

Pattern 

Test 
program 
memory 
block 

Data 
memory 
blocks 

MUX 

e ~ -u Co 
0-u..o 

Fig. 4. Block diagram of the test equipment 

241 

The algorithmic hardware-supported test generation system proposed 
here consists of a test program memory block, independent data memory 
blocks for storing data arrays like v.:4R, OP and ET, a multiplexer, an 
event analysis block and a control unit. The simplified block diagram of 
the test equipment is represented in Fig. 4. 

Test vectors are composed by the multiplexer and the control unit in 
the on-line mode using the information stored in the program memory and 
in the data memory. The program word contains two parts: the data (test 
vector) to be transferred through the multiplexer to the pin electronics and 
the instruction part. The instruction determines the operation mode of the 
multiplexer. In the normal mode only data from the program memory will 
be transferred and data memory will not be used. The other modes allow to 
mix the information from the program and data memories. In this case the 
instruction determines a window in the test vector, where the data normally 
read from the program memory will be read from the data memory (the 
exact source - VAR, 0 P or ET memory block will also be determined by 
the instruction). The mode of mixing information from different sources 



242 R. UBAR 

corresponds to the case where symbolic values in the test program are to 
be replaced by the real numerical values from the arrays VAR, OP or ET. 

To give the possibility to run automatically generated test patterns 
at the DUT's customary speed and in an undisturbed environment, the 
memory pseudo-emulation approach was introduced, in which the address 
bus of the DUT when reading tester-supplied memory is ignored. In this 
approach the tester essentially becomes the program memory. It applies 
data or instructions to the data bus while activating the ready line and 
putting the microprocessor in a 'WAIT' state between applications. 

Therefore, the tester unit controls the write-access to the data bus to 
apply instructions and also the read-access to check the results. It must be 
able to disable on-board memory so that when the microprocessor address 
bus is cycling through the memory address (program counter), the tester 
will respond, not the memory in the DUT. 

In addition, the tester must be able to write on to the data bus to 
perform its function during single step testing. The data bus is read by the 
microprocessor during its program memory accesses when the tester drives 
the bus. 

The advantages of this memory pseudo-emulation approach are the 
following: 

the diagnostic resolution will be increased because of eliminating ad­
dressing functions of the DUT from its operational activity under 
test; 

- the test program can have the form of linear test pattern sequence 
the generation of which is easy to automate. 
Special features are implemented in the test equipment to support by 

the hardware event-driven testing. A part of the test vector is reserved 
for programming time instants at which the corresponding test vector is 
to be executed. The programming is actually reduced to only setting the 
corresponding values for some bits which code the corresponding events on 
the output pins of the DUT, characteristic of the time instant of interest. 

In such a way the test program consists of IF/THEN/DO clauses. 
The IF portion of the clause specifies an event; the THEN/DO portion 
specifies the test vector to be executed when that event occurs. 

Using the possibility of event programming introduced into the test 
equipment, different interface protocols between asynchronously working 
tester and the DUT can be easily programmed. On the other hand, by 
introducing the corresponding information related to the interface protocols 
(like variables t in Fig. 1) into the AG-description of the device, it will be 
easy to generate such conditional test programs automatically. 

The event-oriented tester architecture makes it possible to test devices 
which contain internal clock generators and are not synchronized by test 



AN APPROACH TO DEVELOP INTELLIGENT DIGITAL TEST SYSTEMS 243 

equipment and it also makes it possible to test dynamically devices that 
work at higher rates than the tester itself. 

Conclusions 

New test generation and testing methods for microprocessor based digital 
devices and digital systems in general were developed. The following ad­
vantages of the proposed approach compared to the known solutions can 
be emphasized: 

1. A reasonable compromise between software and hardware supports 
in automated test generation process was found. As a result, a considerable 
gain in reducing the memory space and the time needed for loading test 
data was achieved. 

2. The class of digital objects for which hardware-supported algorith­
mic test generation is reasonable was expanded, compared to the present 
day practice. 

3. Implementing the memory pseudo-emulation technique allows to 
reach simultaneously high diagnostic resolution (because of minimizing the 
amount of functionality to be tested in each step) and high test coverage 
(because of running tests in a DUT's customary speed and in an undis­
turbed environment). 

4. Event-orientation in both test generation and test implementation 
simplifies conditional test program automated synthesis and makes it pos­
sible to test dynamically devices that work at higher rates than the tester 
itself. 

References 

AKERS, S. B. (1978): Binary Decision Diagrams. IEEE Trans. on Comp., June 1978, 
pp. 509-516. 

ALBROW, R. (1983): Test Pattern Compaction in VLSI Testers. Proceedings of the 1983 
International Test Conference, pp. 528-531. 

FICHTENBAUM M. L. (1987): A Memory Test Approach for the General-Purpose Digital 
Board Tester. Proceedings of the 1987 International Test Conference, pp. 805-808. 

1'10RRIS, D. S. (1986): In-circuit, Functional or Emulation - Choosing the Right Test 
Solution. Computer-Aided Engineering Journal, June 1986, pp. 94-101. 

SARGENT, B.J. (1983): Implementation of a Memory-Emulation Diagnostic Technique. 
Proceedings of the 1983 International Test Conference, pp. 528-531. 

UBAR, R. (1976): Test Generation for Digital Circuits Using Alternative Graphs. Dig. of 
Technical University Tallinn (USSR), No 409, pp. 75-81. (in Russian) 

UBAR, R. (1981): Testing of Digital Devices. parts I and H. Tallinn Technical University, 
pp 226. (in Russian) 

UBAR, R. (1983): Test Pattern Generation for Digital Systems on the Vector AG-model. 
Proceedings of the Fault Tolerant Computing Symposium, Milano, pp. 347-377. 



244 R. UBAR 

UBAR, R. (1988a): Alternative Graphs and Technical Diagnosis of Digital Objects. Elec­
tronic Techniques, Vo!. 8, No .5 (132), pp. 33-57. (in Russian) 

UBAR, R.- LOHUARU, T. (1988b): Description of Digital Objects with AG for Test Gen­
eration Purposes. FTSD, Suhl (GDR), pp. 157-163. 

Address: 

Raimund UBAR 

Department of Computer Engineering 
Tallinn Technical University 
Ehitayate tee 5, 
200108, Tallinn, Estonia, USSR 


