
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 34, NO. 4, PP. 257-272 (1990)

INTELLIGENT SENSOR-INTEGRATED SYSTEMS BY
MEANS OF ASSOCIATIVE PROCESSING

K. E. GROSSPIETSCH

Society of Mathematics and Data Processing
St. Augustin, Federal Republic of Germany

Received: Oct. 20, 1990; Revised: May 2, 1991.

Abstract

The concept of an innovative processor system is presented. It combines the inclusion of
processing logic in the bit cells and word cells of a memory with the use of sensor devices for
parallel input of optical data. Associative (content-addressable) features further facilitate
the processing of data in this 'intelligent memory' approach. Moreover, changes in the
memory decoder enable also the parallel access to memory cells.

The basic operations of the extended memory are explained, and the resulting
instruction set is presented. Some potential applications in the field of parallel image
preprocessing/image processing, and corresponding performance aspects are shortly dis
cussed.

Keywords: Intelligent memory, associative processor systems, optical sensor systems.

1. Introduction

In the practice of data processing we can observe a growing demand for
more and more 'intelligent' hardware systems, i. e. subsystems have to
take over from the end user a growing spectrum of subtasks within the
entire hardware system 'automatically'. For instance, integration of sen
sors into computing systems implies some kind of intelligent preprocessing;
this means transfer of processing tasks from the central host to peripheral
devices, thus causing considerable performance speedups.

If such extensions of functionality are realized only at the level of
software, this usually causes unacceptable performance results. As an al
ternative, the additional functionality can be transferred into hardware
outside the central host processor.

Today the advanced hardware technology (very large scale integration
VLSI and wafer scale integration WSI) implies the potential to efficiently
implement also new architectures which formerly could not be realized
because of technological restrictions like pin limitations, too small bit ca
pacities, etc. (SAMI and DISTANTE, 1990). In this context, especially those
approaches appear interesting which are to eliminate the 'bottleneck' be-

258 K. E. GROSSPIETSCH

tween processor and data: In conventional von N eumann machines, every
time when data are to be manipulated, they have first to be fetched from
memory and transferred to the processor. The result of the processing op
eration has to be stored back in memory. So, for many of these operations,
most of the execution time is taken by data transfers.

This principle at the beginning of computing technology of course was
dictated by the very high price of the hardware for the processing logic. To
day, at the current state of hardware integration technology, this situation
has changed. So, now an alternative to the processor/memory bottleneck
could be to integrate more logic directly in the memory structure, i. e. to
make the memory more intelligent.

In this context, as one interesting step towards smarter memories,
also systems for associative (meant here always as a synonym for content
address able) storage and processing of data can win importance again:
Content-addressable memories (CAMs) have been discussed by system de
velopers already for a long time. The benefit of such structures for speed
ing up search operations is unquestionable, but for a long time the state of
technology allowed only very small CAM capacities.

It is now the first time that the state of art in hardware integration,
i. e. the current VLSI technology and the advent of wafer scale integra
tion (WSI), promises to enable the implementation of such memories with
reasonable capacities and cost/bit ratio. Moreover, the extension of the
principle of content-addressing from storage and retrieval of data also to
processing of data has been proven to imply many interesting features for
various fields of parallel processing, e. g. image processing, CAD support
etc. (FERNSTROM et al., 1986, LEA, 1988).

In this paper, an innovative approach is discussed which combines
processing logic with ordinary memory functions under associative control;
so the resulting system can be called an 'intelligent memory'. Moreover, we
will show how this system can be combined with parallel optical sensors;
thus, direct parallel input of measured optical data, followed by some kind
of processing, is possible. This feature seems especially interesting for ap
plications in optical measurement systems, which, moreover, need internal
processing intelligence. Apart from this aspect, the architecture that will
be introduced, is a remarkable step towards the mentioned general goal of
removing the von N eumann bottleneck.

First, in Section 2 the resulting architecture is introduced, and the
side requirements of this specific architecture are discussed. Section 3 de
scribes the user interface of the developed approach in terms of a set of
machine instructions. In Section 4, a short report about the status of
the implementation is given. Finally, in Section 5 we shall outline some
application and performance aspects of the new architecture.

INTELLIGENT SENSOR-INTEGRATED SYSTEMS 259

2. The Proposed Approach

Basic Principles and Requirements

The central idea is to achieve potential parallelism and performance in
crease not by massive replication of conventional processors (systolic ar
rays, etc.), but by an extension of the memory functionality ('intelligent
memory'). So, compared with classical processor arrays, a much larger
number of processing elements can be realized; correspondingly, these pr07
cessing elements tend to be simpler than ordinary processors. A second
basic motivation is the investigation of associative properties.

Several interesting approaches for CAMs and content-addressable pro
cessor systems have been reported in the last years (FERNSTROM et al.,
1986, KOHONEN, 1980, LEA, 1988, TAVANGARIAN, 1985, VVALDSCHMIDT,

1987). The approach discussed here is mainly based on the ideas of (LEA,

1988) about associative processor systems; it tries to extend this solution
especially with regard to the flexibility of the logic elements and to the
combination of memory and processor functions.

This goal is to be achieved by the inclusion of the new features in
an existing RAM structure. RAM, CAM and a content-addressable pro
cessor/register array (CAPRA) together form a kind of storage hierarchy
where the main part can consist of an ordinary RAM (see Fig. 1).

Compatibility between these steps of a hierarchy is achieved in the
sense that 'smarter' parts also provide the full functionality of the simpler
ones. So, the CAM parts are requested also to be operable as RAMs; the
CAP RA is implemented by some functional extension of the CAM archi
tecture. As a consequence of the basic RAM property of all the three com
ponents, the additional 'smarter' components are included as additional
memory segments within one uniform physical memory space. Their indi
vidual bit capacities can arbitrarily be tailored to the specific needs of the
application, i. e. it depends on the application how many CAM or CAPRA
words are added to the basic RAM parts.

With respect to more flexible logic features, the following main ar
chitectural properties were felt promising to support a more flexible use of
content-addressable memory/processor systems:

(j) (a) With relatively low hardware effort the usual comparison logic of a
CAM cell can be extended to provide an entire set of one bit Boolean
operations.

• (b) Extension of arithmetic elements from one bit adder elements
per word cell as used in (LEA, 1988) to larger 4 bit adder elements;

260 K. E. GROSSPIETSCH

ALU Priority

CAPRA

o lO~"

CAM

RAM

Fig. 1. Schematic structure of the proposed architecture. Dashed lines: boundaries of
word cells, C CAM bit cell with comparison logic, E extended bit cell with
Boolean logic, R normal RAM bit cell

moreover, for every ALU in the CAPRA array, a data path connect
ing it with its two nearest neighbour ALUs is provided: So, parallel
exchange as well as parallel arithmetic processing of data can be pro
vided.

Iii> (c) Integration of an optical sensor directly into the extended bit cells;
this enables a fully parallel input of optical data, thus removing the
von N eumann bottleneck.

In the next Subsection, we shall discuss the properties of this re
quested architecture in more detail; it will turn out that the dimensionality
in which the additional components can be realized, is strongly dictated
by the implied hardware effort (measured in terms of integrated transistor
functions or chip area).

The Resulting Architecture

Our approach specified to fulfil the mentioned requirements has the follow
ing characteristics:

INTELLIGENT SENSOR·INTEGRATED SYSTEMS

SAR

Word line -------------,

jSF~{
I Bool ~

t--+ __ .::..:IF-G

Input
register

4

4

261

Adjacent
upper
word cell

4

14
"

f4
Adjacent
lower OSC v

Fig.

l\ ,.
'\ /"

\ I I

\ I I
\ I I

{]:
AF I

I
I

- -- ____ I

MDR

Global
control

v

\ I

Read/
write
line

Buffer

word cell

0-"
Flag Priority

logic

2. Scheme of a one bit storage cell and the 4 bit ALU stage within a CAPRA word
cell, AF - activity flag, BOOL logic block for Boolean operations, BUFF -
ALU input buffer, IF - intermediate fiipfiop, MDR - memory data register,
OSC - optical sensor circuit comprising phototransistor, sense amplifier and
analog/digital converter, SAR- search argument register, SF - storage fiipfiop,
-: data lines, -- -jo control lines

The CAM has also an additional RAM access mode so that it can
e. g., be loaded or read like ordinary RAM cells.
In the CAPRA (see Fig. 2) segment, as the base cells we again have
RAM bit cells; in addition, we have here the following features:

262 K. E. GROSSPIETSCH

1) To every bit cell a simple logic block is associated which enables Boolean
operations between two one-bit operands; this enables bit-parallel and
word-parallel execution of a Boolean operation on all words of the CAP RA.
It can be shown that such an extension can be realized by an acceptable
hardware effort: In the simplest technology, 8 additional transistor func
tions are sufficient to realize the Boolean unit (MEAD and CONWAY, 1980);
this seems acceptable when compared with the six transistor functions of
a normal static RAM flipflop celL

2) To every word cell in the CAPRA (the word length classically being
n= 32 bits), a simple 4-bit adder/shifter unit is assigned; so, an arithmetic
operation can be performed on all the words of the CAPRA segment in
parallel in about 8 cycles. Two objectives led to this dimensioning of the
AL U part: Such a data width could especially support the processing of
pixels with 16 grey levels (coded in 4 bits) in image processing. On the other
hand, estimations showed that such an ALU width causes only 30 percent
additional chip area in the CAPRA segment when compared with a memory
word of a classical length of 32 bits. So, this is an effort which is still in
balance with the area effort of the bit cell array itself.

3) An additional flag bit is associated to each bit cell of the CAPRA; this
enables us to flexibly define arbitrary 'activity patterns' for the cells of the
array; so it is possible to process data not only on all processor elements,
but instead on a previously defined arbitrary sub-pattern of processing
elements.

4) For the RAM access, a simple extension of the memory decoder as
proposed in (TAVANGARIAN, 1985) is provided by means of an additional
mask register; by setting bits of this mask register to 1, an arbitrary part of
the address bits can be declared to be 'don't care' bits; thus, it is possible
to implement concurrent access to word cells which in their addresses have
common address bit subpatterns. So, it is possible to write the same bit
pattern into all selected word cells, thus performing a very fast common
initialisation of these word cells. Moreover, this mechanism is also used to
trigger, for a given set of words, the corresponding ALUs to be active or
passive, via the setting of an ALU activity flag.

5) Additionally a sensor element is provided for every bit cell of odd bit
position i (i = 1, 3, ... , n-1; n being the length of the CAPRA data word)
together with its right neighbour bit cell, i. e. one sensor is shared by a pair
of two adjacent bit cells. This sensor element consists of a phototransistor,
a sense amplifier and a programmable analog/digital (A/D) converter. The
phototransistor is realized as a MOS transistor with floating bulk substrate;
this was shown to be an efficient method to integrate photodetectors into

INTELLIGENT SENSOR-INTEGRATED SYSTEMS 263

a CMOS process without process modifications (KLINKE et al., 1991). So,
whereas most sensor solutions are implemented in an analog technology
which is hardly compatible with components of digital MOS technology,
our sensor solution can easily be combined with the other subcomponents
of the extended bit cell. The sensitivity of the phototransistor depends on
its operating point and on the wavelength of the incident light (KLINKE et
al., 1991). To realize the A/D converter with programmable resolution, but
without any precision elements, the cyclic conversion technique (ONODERA
et al., 1988) was used. The output of the converter is shared by the corre
sponding bit cell and its right neighbour bit cell, so that digitized bits of
the converted analog input can subsequently be stored in the flipflops of
this bit cell pair.

Operation of the Extended Bit Cell

In the following, we shall focus on the operation of the CAPRA structure
(see Fig. 3):
Data can be written into a word cell - controlled by the correspond
ing word line emanating from the memory decoder - via the MDR and
read/write lines. For every bit of a word cell, its contents stored in the stor
age flipflop SF can be combined with the contents of the read/write line
by a Boolean operation in the functional block BOOL; the result of this
operation is latched in the intermediate flipflop IF. From there it can be
propagated further (control line TRANSFER in Fig. 3) either to the adja
cent ALU (line GLOBAL/LOCAL = 1), or to be memorized in the storage
flipflop SF (GLOBAL/LOCAL 0). These transfers are performed either
unconditionally (control line UNCOND 1) or dependent on the status
of the cell which is memorized in the activity flag AF (control line COND
= 1, if AF stores a '1 '). As a third sink for the bit transfer from the inter
mediate flipflop IF, setting of the activity flag is possible (control line SET
FLAG). This is performed either unconditionally (control line UNCOND
= 1) or dependent on the present status of AF (control line COND' = 1);
in the latter case, setting of AF is possible only if AF has not yet been set,
i. e. if AF is storing a '0' (control line COND' then equals 1).

The intermediate flipflop can receive a data bit not only from the
functional block BOOL, but, alternatively, also from the adjacent ALU
(control line REC = 1), or from the optical sensor element (control line
SCAN = 1).

Digitizing of analog optical data by the A/D converter is done by
means of the cyclic conversion method. The converter performs a conver
sion of m bits accuracy in 3m cycles. For the purpose of storage in the

264 K. E. GROSSPIETSCH

BUS

Word line

SF? G-G- DA

Scan

______ -+ _____________ ~-B-O-O-l----~
Set flag "

REC

Cond Transfer

Cond Uncond

~--------1=======Lr------~A~LU

I Local/global

Fig. 3. Logic level structure of a bit cell. AD
totransistor, SA - sense amplifier

analog/digital converter, PT pho-

extended bit cells, an accuracy of 4 bits was specified. These 4 bits are
subsequently stored (via the intermediate flipflops IF) in the SF and AF
flipflops of the pair of bit cells, to which the sensor element is associated.

3. Elementary Machine Instructions

For the described memory structure we have defined the following set of
machine instructions:

(/) WRITE, AD R; / Normal RAM write access (executable in all system
parts).

(/) READ, ADR; / Normal RAM read access.
(/) MWRITE, ADR, MASK; / Masked RAM write access: multiple ac

cess to a set of word cells in memory which have some address sub
pattern in common.

INTELLIGENT SENSOR·INTEGRATED SYSTEMS 265

Ell ASSOCOMP; I Word-parallel and bit parallel comparison of the con
tents of word cells with a predefined search pattern (executable in the
CAM and in the CAPRA part).

Ell BOO LOP; I Boolean operation combining the bits of the memory
words with the bits of an external operand.

III SCAN; I Transfers the digitized bits of the optical input from all the
AID converters to the intermediate flipflops of the corresponding bit
cell pairs.

I) STORE, COND (UNCOND); I Stores in the bit cells of the CAPRA
part the result of the Boolean operation either unconditionally (i. e.
for all bit cells in the CAPRA) or conditionally (i. e. depending on
the local activity flags of each cell).

I) SET AF, COND (UNCOND); I Transfers the contents of IF into the
activity flag either unconditionally or conditionally (i. e. only for
those bit cells where AF = FALSE).

The ALU operations in the CAPRA can be grouped into two classes:

I) unconditional AL U operations
I) conditional AL U operations

Operations of the second class exactly correpond in their structure to those
of the first class except that they are executed in a local AL U only if an
activity flag of this ALU is set to TRUE.

The unconditional operations all have the structure ALU OP,
BUFFER(j), REGA (REGB, REGC, SAR), BUFFER(j) (REGA); thereby
the first operand BUFFER(j) is always a 4-bit segment of all memory
words; the position of this segment is given by the index j. As the sec
ond operand, we may use either the register REGA, REGB, REGC or the
search argument register SAR (the latter register usually is an interface
register for the CAM search operation). Here, REGA is a 4 bit register
corresponding to each ALU in the words of the CAPRA. REGB and REGC
just represent the REGA register of the upper (lower) neighbour ALU. As
an alternative, the least significant 4 bits of the SAR can be used to provide
one global 4 bit operand to all the ALUs of the CAP RA.

So, by selection of the second operand, it is possible to combine an
operand held in a memory word either with local data residing in the
corresponding AL U, in one of its neighbours (thus enabling communication
between neighbours) or with a global operand provided from outside.

The ALU operations are executed either unconditionally on all word
cells of the CAPRA or conditionally controlled by a local ALU flag. The
setting of these flags is performed dependent either on the outcome of cer
tain ALU operations (as usual also in conventional ALUs) or explicitly from
outside. For this purpose we have the operation SET ALU FLAG, ADR,

266 K. E. GROSSPIETSCH

MASK. This operation provides - similarly to the masked write operation
MWRITE - access to the flag of one or several AL U s in one cycle.

To summarize, the instruction set represents the set of operations of
CAPRA which are directly supported by the hardware. All more com
plex algorithmic tasks are intended to be realized in terms of these basic
programming building blocks. A number of programming examples is pre
sented in (GROSSPIETSCH, 1991).

4. State of the Implementation

A complete specification and simulation of the proposed architecture was
recently completed. This description was performed in the hardware de
scription language VHDL. It was realized at switch level, i. e. each individ
ual transistor of the entire architecture is modelled, but a part of their elec
trical properties is neglected (these properties are studied by well-known
transistor simulators like SPICE). The basic physical properties, however,
of the MOS transistor, namely delay times, gate capacity, and leakage cur
rent, were included in our VHDL description. Our switch level model of the
transistors was realised for NMOS and PMOS transistors, as well as CMOS
complex gates. Based on these transistor primitives, in a second step we
developed more complex VHDL constructions to describe gate and fiipflop
structures. All the introduced VHDL buiding blocks were then used to im
plement the simulation of the entire system. The complete description of
the system (including also e. g. peripheral circuits, priority logic, etc. which
are not discussed in this paper) comprises about 6,000 VHDL statements.
A complete description can be found in (KOHN and SCHAEFER, 1991).

For several of the individual CAPRA components, the physical lay
out has already completely been designed (KLINKE et al., 1991). With
regard to the rest, simulation at the electrical level (by means of SPICE)
and the corresponding generation of layout structures are currently nearly
completed. The resulting basic bit cell in CMOS implementation turned
out to comprise 82 transistor functions.

For the AL U slices, we consider a simple and concise structure as
proposed in (KAISER, 1980, TEXAS INSTRUl'vlENTS, 1978). This ALU
structure can perform 16 Boolean and 16 arithmetic operations; corre
spondingly, it needs 4 control lines for operation selection and 1 control
line for the selection between the Boolean and the arithmetic mode.

It cannot be stressed too strongly that the investigations described
here are basic research, and the resulting implementation is an experimental
one. As the system is not yet completed, about performance aspects only
some preliminary results can be presented.

INTELLIGENT SENSOR-INTEGRATED SYSTEMS 267

In addition to the component analysis mentioned above, by means of
the complete VHDL simulator, also studies for detailed performance eval
uation were planned and have already started. A cross-assembler for the
introduced machine operation language has been implemented. The assem
bler translates source programs into code that can be interpreted by the
simulator. To show the 'software' properties of the CAPRA structure and
of its potential use in interaction with classical RAM and CAM parts, a
package of demonstration software for various applications is being devel
oped. It is beyond the scope of this paper (and, for most applications also
too early) to present detailed performance results. However, in the final
section we shall shortly discuss some application areas where especially the
combined use of the described processing logic together with optical sensor
appears very promising, with regard to performance.

5. Potential Sensor-Oriented Application Fields

In general, two main classes of applications appear promising for CAP RA
like architectures:

e Applications where data are set-organized.
Cl Applications where data are array-organized.

The first class can mainly be found in the area of data base applications.
Here, it was shown (GROSSPIETSCH, 1991) that the use of the CAPRA
architecture (without sensors), especially of the comparison operations in
combination with multiple cell activations, leads to tremendous perfor
mance improvements for relational data base operations.

vVith respect to sensor-oriented systems, however, the second class of
applications seems more interesting. Array-structured data e. g. appear
in many picture processing or pattern recognition tasks. In the following,
we shall shortly examine some aspects of the CAPRA architecture for this
field.

N eighb ourhood Operations

One of the very basic operations for pixel processing is the comparison of
a pixel point with its 4 or 8 nearest neighbours (GONZALEZ and VVINTZ,

1987). In CAPRA, the comparison with an 8-neighbourhood can be solved
in the following way (see Fig. 4): In a first phase, to compare a bit j
in word cell i with its left and right neighbour j - 1 and j + 1, the AL U
of word cell i has to fetch 3 bits from its own word cell. This operation
and the subsequent comparison of the bits in the ALU can be performed

268 K. E. GROSSPJETSCH

concurrently for all words in the CAPRA representing pixel data. So, only
all ALUs of the CAPRA have to be activated before by one masked write
operation setting the ALU activity flag to 1.

j -1
"- } /

Word; + 1 ALU ; + 1

Word; ~ ALU i

Word ;-1 ALU i-1

Fig. 4. Scheme of a neighbourhood comparison for pixel processing

In a second phase, each AL U i then has to fetch 3 bits from the bit positions
j - 1, j, and j + 1 of its upper neighbour word cell via AL U i-I and
compare them with bit j of word i still held in ALU i. This operation
can again be done concurrently for all the words in the CAPRA. In a third
phase, a corresponding procedure is carried out to fetch bits from the lower
neighbour word cell and to process them in the same way.

Sequentially, the pattern of the basic pixels j which are to be com
pared with their neighbourhoods, is moved over the 32 bits of the CAPRA
word length. So, to summarize, the execution of neighbourhood operations
on the entire pixel array can be performed in the order O(n) steps (n being
the word length in CAPRA), independent of the number of pixels in the
array.

}v1ore Complex Image Processing Algorithms

Many image processing algorithms are based on the use of neighbourhood
comparisons as basic building blocks. It is beyond the scope of this pa
per to discuss these algorithms in more detail; a comprehensive discussion
of such algorithms is presented in (FERNSTROM et aI., 1986). This book
also analyses the performance of associative processor systems for image
processing tasks, by the example of the LUCAS array processor developed
at the University of Lund. LUCAS is a word-parallel, bit-sequential as
sociative processor. With regard to the considered algorithms, CAPRA's
performance is of the same order as that of LUCAS; however, CAPRA is
superior by a constant factor of about 4, as we have 4 bit ALUs instead of
the purely bit-sequential processing in the LUCAS words.

INTELLIGENT SENSOR·INTEGRATED SYSTEJfS 269

Image Preprocessing

One class of such more complex image transformations is image preprocess
ing to reduce data and to extract image features. Here, the combination of
optical sensors and processing power within the CAPRA words offers to di
rectly manipulate optical data during the period of scanning them into the
system. This is especially useful for applications where a reduction of the
original image data is essential for subsequently processing them efficiently.

Many image preprocessing algorithms are again based on simple neigh
bourhood operations. We consider here only one characteristic example:
An operator that is often used for this purpose, e. g. for image skeletoniza
tion or contrast enhancement, is the so-called Sobel operator (GONZALEZ
and VVINTZ, 1987). For every pixel of a pixel array, this operator generates
gradient vectors Gx and Gy in the x- and y-direction. This is approximated
by constructing a weighted sum of the values of neighbourhood elements:

Here, the centre of the neighbourhood is represented by pixel X5, and the
neighbours by Xl •. . X4, x6 •.. Xg. Images generated from these gradient
values enhance the contrast which existed in the original image.

It can be seen that the Sobel operator only needs some elementary
operations as addition, subtraction, and multiplication by 2. These opera
tions can easily be realized by the CAPRA AL U s.

Such data reduction might be of advantage also for adaptive systems,
e. g. neural nets: vVith respect to the direct hardware implementation of
neurons, there is still the problem that the internal complexity of neural
representations usually is very high. So a preprocessing phase reducing
data and extracting relevant features could considerably speed up neural
algorithms (HOSTICKA, 1991). A further benefit would be if such prepro
cessing could directly be combined with the scanning of the original neural
data. Here, especially for the recognition of optical patterns by neural
algorithms, the CAPRA architecture seems very interesting as it enables
the combination of direct parallel input of optical data together with par
allel preprocessing. Such neural solutions, based on preprocessing phases,
were recently proposed for applications like optical character recognition
or optical inspection of chips (HoSTICKA, 1991).

270 K. E. GROSSPJETSCH

General Performance Aspects of CAPRA

It has turned out that e. g. neighbourhood operations on a pixel array can
be performed in the CAPRA system in the order O(n), n being CAPRA's
word length, independent of the number of words (i. e. also number of
ALUs) in the CAPRA. Such a result is comparable to other processor arrays
with the same number of ALU elements. This also holds for most other
examples of simple numerical operations where neighbourhood regions can
be processed more or less independently.

In general, it has to be remarked that when a comparison with other
processor arrays (e. g. certain systolic arrays) is made for a given task
example, the results often depend on whether the loading phase of the
system is neglected or not (also most systolic arrays are intended to work
as coprocessors for some host; so, usually they have to be sequentially
loaded with data from the host).

As a purely numerical example, the multiplication of an N x N matrix
with an N component vector (residing both in the system) can be shown
to be carried out in CAPRA (by parallel multiplications and by adding up
and bringing together the partial sums in a tree-like manner) in the order
O(ffi). If loading e. g. of the vector is also taken into account, the entire
procedure is of order O(N), the same value as resulting for certain systolic
array approaches (MEAD and CONWAY, 1980).

It has to be stressed that especially loading of optical data, or broad
casts to all processing elements, can be performed very efficiently in the
order 0(1). Moreover, the selection of arbitrary subgrids of CAPRA' s bit
cell array can be performed very flexibly in a few machine instruction cycles
by combining the use of the ASSOCOMP search instruction, with masked
WRITE instructions for multiple access to word cells or ALUs. With re
gard to all these innovative aspects, comparative performance figures from
other processor array approaches are completely missing.

Apart from that, the complexity of the individual processor elements
in CAPRA is considerably lower than in most present processor arrays.
For many tasks where only relatively simple operations of the array are
required, this is, however, no tradeoff; on the other hand, the simpler
structure of the processing elements allows to implement a much larger
number of them on a given wafer area, compared with (systolic) arrays of
more sophisticated processors.

The simple examples discussed seem very promising; nevertheless it
should be kept in mind that these are first, preliminary results; evaluation
of a comprehensive set of benchmark examples is in progress, but not yet
completed. Additional performance results for a similar associative proces
sor system can be found in (LEA, 1988).

INTELLIGENT SENSOR·INTEGRATED SYSTEMS 271

Conclusion

In this paper, an innovative architecture for associative processing has been
described. Its basic idea is to combine processor and memory function
within one basic word cell ('processing memory'). The normal bit cell of
RAM architectures is extended to include also Boolean logic and a sensor
element; moreover, some ALU slices are assigned to each word cell.

It has been outlined that this architecture is interesting especially
with regard to 'intelligent' preprocessing of scanned data, or to general
image processing and pattern recognition tasks.

References

FERNSTROM, C. F. - KRl:zELA, L - SVENSSON, B. (1986): LUCAS Associative Array
Processor. Springer-Verlag, Berlin, Heidelberg, New York.

GONZALEZ, R. C. - WINTZ, P. (1987): Digital Image Processing. Addison-Wesley Pub
lishing Company, Reading (Mass).

GROSSPIETSCH, K. E. (1991): Associative processing (Invited contribution). In: Soucek, B.
(ed.), Fast, Invariant, Dynamic and Parallel Intelligence, John Wiley and Sons, to
appear.

HOSTICKA, B. J. (1991): Neue Architekturen fur die Signalverarbeitung (New Architec
tures for Signal Processing). In: Zimmer, G. (ed.), Proc. GME-Fachtagung 'Mikro
elektronik', Baden-Baden 1991, VDE-Verlag, Berlin Offenbach, pp. 1-9.

KAISER, J. (1980): Fehlerdiagnose in einem hochzuverlassigen Einprozessorsystem (Fault
Diagnosis in a Highly Reliable Uniprocessor System). GMD-Studie Nr. 52, Gesell
schaft fur llfathematik und Datenverarbeitung, St. Augustin, Germany.

KLINKE. R. - BROCKHERDE. W. HOSTICKA, B. J. ZIMMER, G. (1991): Eine
Photodetektor-Matrix mit Ausleseelektronik in Standard-CMOS-Technologie (A
Photodetector Matrix with Readout Electronics in Standard ClvfOS Technology).
In: Zimmer, G. (ed.), Proc. GME-Fachtagung 'MikroelektTonik', Baden-Baden 1991,
VDE-Verlag, Berlin Offenbach, pp. 175-180.

KOHN, M. - SCHAEFER, U. (1991): Entwurf und Simulation eines assoziativen Prozes
sorsystems (Design and Simulation of an Associative Processor System). Diploma
Thesis, University of Bonn.

KOHONEN, T. (1980): Content-addressable Memories. Springer-Verlag, Berlin, Heidel
berg, New York.

LEA, M. (1988): ASP: A Cost-Effective Parallel Microcomputer. IEEE Micro, October
1988, pp. 10-29.

MEAD, C. - CONWAY, L. (1980): Introduction to VLSI systems. Addison-Wesley Pub
lishing Company, Reading (Mass.)

ONODERA, H. T..\TEISHI, T. TAMARU, K. (1988): A Cyclic AID Converter Technique
that Does not Ratio-matched components. IEEE Journ. of Solid State Circuits,
Vo!. SC-23, pp. 1·52-158.

SA~!I, M. - DISTANTE, F., (eds.) (1990): Proc. Srd IFIP Workshop 'Wafer Scale Integra
tion', Como 1989. North Holland, Amsterdam.

TAVANGARIAN, D. (198-5): Ortsadressierbarer Assoziativspeicher (Location-addressable
Associative Memory). Elektronische Rechenanlagen. pp. 264-278.

272 K. E. GROSSPIETSCH

TEXAS INSTRUMENTS (1978): The TTL Data Book.
WALDSCHMIDT, K. (1987): Associative Processors and Memories: Overview and Current

Status. In: Proebster, W. (ed.), Proc. COMPEURO '87, pp. 19-26.

Address:

Dr. K. E. GROSSPIETSCH

Institut fur Systemtechnik
Gesellschaft fur Mathematik und Datenverarbeitung (GMD)
Postfach 1240, D-5205 St. Augustin, Germany

