
HARDWARE DESCRIPTION LANGUAGE
FOR SPECIFICATION OF DIGITAL SYSTEMS

Gy. CSOPAKI

Institute of Communication Electronics,
Technical University, H-152l Budapest

Received January 13, 1987
Presented by Prof. Dr. S. Csibi

Abstract

The new hardware description language presented in this article was developed for the Comput
er Aid for Recursive Synthesis (CARS) system. System CARS has been developed to assist the desig
ner in the synthesis pha:se of digital system design. CARS applies a top-down structured approach
in the design process and can be used at any user defined level of refinement. The description language
developed for CARS is well suited to describe behavioural concepts and structures as well.

Introduction

The hardware description language was developed for the CARS (Computer
Aid for Recursive Synthesis) system. The system CARS uses a top-down structured
approach in synthesis. The description language enables the designer to describe the
behaviour and structure of a system at any level of design [1]-[3].

Requirements for the description language:

- the language provides the description of behaviour of a unit as a functional
specification at any level and provides the definition of structure by compo
nents (lower level functional units) and their interconnections;

- the language elements and procedures provided should be totally level-in
dependent;

- the description of a functional specification and its structure should be a
document of this unit;

- the elements of the language provide time correct description of units.

1. Des'gn process in CARS

The design process in CARS consists of three steps to be repeated recursively
[4]-[6] :

- the user describes the expected behaviour of units with time parameters. This
description is called functional specification, and refers only to inputs and outputs.
CARS checks the syntax;

4 GY. CSOPAKl

- the user describes the propesed structure of this unit using functional speci
fication of components and interconnections among them. CARS checks the syn
tax;

- the user executes the simulation process on the functional unit and the struc
ture by the same input data. CARS compares the results of simulation on the functio
nal specification and the structure;

- if the structure fulfils requirements, the procedure may be repeated for the
components of the structure. When all functional specifications are descriptions of
existing units, the design process is finished.

The features and elements of language

2.1. Description of behaviour

The behaviour of functional units can be described as a functional specification.
In the language the functional specification is called TYPE. A type is identified by an
identifier. The type identifier is succeded by the formal parameters; by the external
input, output and bus signal identifiers.

Type- and signal identifiers have to be simple identifiers, i.e. strings beginning
with letters and containing letters and numbers.

For example:

TYPE: ADDER CA, B, Cl, S, CO)
ADDER is here the type identifier;
A, B, Cl, S, CO are the formal parameters.

The user defines the external connections and the behaviour algorithm in the
body of a type. The external connections are signals, grouped as inputs, outputs and
busses. They can be described by an identifier. These identifiers have attributes, as
width in bits, realization and representation of the signal values and limitations for
set of values used. The realization of outputs and busses can be totem pole, open-col
lector and tristate. The direction for busses can be defined as bidirectional or output.

In general the declaration part:

INPUTS: (signal declarations).
OUTPUTS: (signal declarations).
BUSSES: (signal declarations).

The (signal declarations) part is a list of signal declarations separated by semi
colons. All signals, having the same attributes can be declared together listing their
names, separeted by commas and putting the common attributes after the names.
Accordingly form of a general signal declaration:

HARDWARE DESCRIPTION LANGUAGE

(signal names) (width) BITS, (digit number) (representation)
DIGIT, (output type) (bus direction)
EXCEPT ((exception list»)

5

The (width) and (digit number) parts are decimal numbers, the (representation)
can be either BIN (binary), OCT (octal), DEC (decimal) or HEX (hexadecimal),
while (bus direction) can be BIDIRECTIONAL or OUTPUT. The (output type)
part can be OC (open collector) or TS (tristate), while the default option is totem
pole. The (output type) and (bus direction) parts can be used only for output or bus
signals. The (exception list) is a list of numbers or intervals, that specifies the prohib
ited values for the declared signals.

F or example:

INPUTS: A, B 4 BITS, 1 HEX DIGIT; Cl.
OUTPUTS: S 4 BITS, I HEX DIGIT; CO.

The signals are defined for a 4-bit binary adder, the length of the A and B input
signals is four bits and Cl (carry input) input signal is one bit long. When the length
of signals is not specified, the default option is one bit. The representation is hexa
decimal for the A and B input signals and for the S output signal, the default option
is binary.

At the inputs of type the signal changes and at the outputs of type the responses
for the input changes have to be defined. Both the input changes and the responses
take the form of input and output events, respectively. Events are changes in the value
of a signal. An input event consists of an identifier and the description of changes
forming the event. The change description consists of a signal identifier and the value
taken by the given signal.

Form of output event:
(event name) : (signal name) CHANGES-TO (value).

The language allows the reference of any input signals by name or subsets of
these signals, by using the ANY or ALL keyword together with the INPUTS or
BUSSES signal type description. The change description can refer to one or more
signals and to one value or to any value.

F or example:

INPUT-EVENTS:
ARISE: A CHANGES-TO I;
INPCHG: ANY-INPUTS CHANGE;
ALLCHG: ALL-INPUTS CHANGE-TO I;
BCHG: B CHANGES;
CLKRISE: CLK CHANGES-TO 1;

Output events are responses for the input events changing the value of one or
more output signals. An output event takes place if an input event triggers it, and
certain time dependent conditions are met,

6 GY. CSOPAKI

The time of the output event is expressed by a delay time from the triggering
event.

The structure of an output event:
(event name): AT (time), IF (condition), (effect)

The (time) consists of an input event name reference and conditionally a delay
time. The condition consists of logic expression that can include time restrictions. The
time restrictions can refer to setup and hold time and to constant value of signals.

F or example:

FLOPSET: AT CLKRISE+40 NSEC,
IF D = 1 FROM CLKRISE-l 0 NSEC TO CLKRISE + 5 NSEC, Q = 1

This example describes the setting of an edge triggered D flip-flop. The Q output
signal takes the value 1 after 40 nsec of the CLKRISE input event. The value assign
ment takes place only after the D input signal satisfies the 10 nsec setup and the 5
nsec hold time condition. The condition part may be more complex and the effect part
may consist of many assignments. At the left side of the assignments may be signal
reference indexed or not indexed, and at the right side of the assignment may be a
logic assignment referring to any declared signals or any constant. The effect part
may consist of memory read or memory write operations.

If there are many output events depending on the same condition, this may be
declared separately as a common condition. Common conditions may be nested with
out any restrictions.

A type may consist of any input, output and bus signal, any input event and
any output event. There are no restrictions for the complexity of condition or effect
part. An example of a complete type gives description of behaviour of a D flip-flop.

TYPE: DFLOP (D, CP, CL, PR, Q, NQ).
INPUTS: D, CP, CL, PR.
OUTPUTS: Q, NQ.
INPUT-EVENTS: CPRlSE: CP CHANGES-TO 1 BIN;

CLFALL: CL CHANGES-TO 0 BIN;
PRFALL: PR CHANGES-TO 0 BIN;

OUTPUT EVENTS:
SET: AT CPRlSE+33 NSEC, IF D STEADY

FROM CPRISE-20 NSEC TO CPRlSE+5 NSEC
AND CL=l BIN AND PR=l BIN,
Q=D, NQ=NOT D;

CLEAR: ATCLFALL+33 NSEC, Q=0BIN, NQ=l BIN;
PRESET: AT PR FALL +33 NSEC, Q=l BIN, NQ=0BIN.

DFLOPEND.

In this example also can be seen that the type description gives nothing about the
internal structure of the described object.

HARDWARE DESCRIPTION LANGUAGE 7

2.2. Language elements for simplification

If the designer does not know the exact time when the output signals get their
new values, he or she can use an interval time in which the value of actual output sig
nals are not available. The name of this element is operation.

The structure of an operation:

(operation identifier): (time and condition);
(effect part)
(operation identifier) END.

The prefix (operation identifier): and the suffix (operation identifier) END flank
the description body.

In the (time and condition) part can be specified the start and stop time for the
operation.

Form of start specification:

STARTS-AT (time expression), (condition)
Form of stop specification:
TERMINATES-AT (time expression) OR (condition)

If the condition part is specified, the operation will be executed only if the con
dition is met. If stop is specified with a condition, the execution of the operation spec
ified by the effect part will be ended if this condition is met.

Form of effect part:

(normal effect part), (early stop part)

In the normal effect part there are assignments specifying the value of the sig
nals at stop time. The values of these signals are unavailable during the operating
time. When the operation is completed because of the condition in the stop specifi
cation, the value of the signals referred in the effect part takes those specified in the
abort part of the assignments.

In the effect part the next statements may be used: simple assignment, IF assign
ment, ON assignment, memory operations. On the right side of the simple assignment
expressions including arithmetical and logical operators may be specified. The IF
assignment consists of one or two simple assignments and a condition. If the condition
is met the first simple assignment (after the THEN keyword) will be executed other
wise the second one (after the ELSE keyword).

In the ON assignment more assignments may be given. Depending on the value
of the referred variable the appropriate assignment will be executed.

In the top-down design process not only TYPES are decomposed into STRUC
TURES but OPERATIONS are decomposed into lowerlevel OPERATIONS and/or
EVENTS as well. This feature of the language helps the designer to make time re
finements.

8 GY. CSOPAKI

Nevertheless the bottom-up approach is also supported by the operation concept
since different event and/or operations can be composed into a higher level operation,
thus eliminating unimportant details of timing considerations at a particular level.

ADDER

Fig. J. BeD adder

Example for operations (Fig. 1.):

TYPE: ADDER (A, B, Cl, S, CO).
INPUTS: A, B 4 BITS, 1 HEX DIGIT; Cl.
OUTPUTS: S 4 BITS, 1 HEX DIGIT; CO.
INPUT-EVENTS:
CHG: ANY-INPUTS CHANGE.
OPERATIONS:
SUM: STARTS-AT CHG
TERMINATES-AT CHG+24 NSEC;
RESULT: S=A+B+CI.
SUM END.
CRY: STARTS-AT CHG
TERMINATES-AT CHG+I6 NSEC;
RESULT: IF (A +B+ Cl) = IOOOOBIN THEN CO =1 BIN;
IF (A+B+CI)(IOOOO BIN THEN CO=O BIl";'
CRYEND.
OPERATIONS-END.
ADDER END.

In this example the input signals are two four bit operands and a carry-in digit
for a full adder. The BIN keyword is compulsory in the effect part and in the condi
tional part, while the default option is decimal.

2.3. Description of structure

The structure description has name, input and output connections and elements.
The external connections must be declared as INPUTS, OUTPUTS or BUSSES.

After the signal declarations, stmcture body has two lists: the list of elements con
stituting the structure and the list of connections among the elements.

HARDWARE DESCRIPTION LANGUAGE 9

The elements of structures are realized by types, and as more elements may be
realized by the same type, the actual realization is regarded as copies of that partic
ular type. Copies are identified by proper names indicating the actual place of use
and parameters.

The form of element list:

ELEMENTS: (type identifier): (copy list).

Types listed in this element list are component types of the given structure and
their level is considered lower than level of actual structure.

The parameters for a given copy in the element list correspond to those in type
definition. Signal names as formal parameters in the element list may coincide with
names of input or output signals or with parameters of other elements in the list. In
both cases the system automatically connects all terminals concerned. This is an
implicit definition of connections.

The connection list defines all remaining nets in the structure. A net definition
is a list of connected signals separated by concatenation mark (-). The designer may
refer to any subset of a multi-bit wide signal by using subscripted identifiers.

The form of connection list:

CONNECTIONS: (list of nets).

where (list of nets) is the definition of all nets separated by semicolons.
In this explicit case of definition inputs and outputs of the components have to be

identified by the qualified identifier:

(element name) . (name of signal in type declaration)

Qualified names may be subscripted, too.

BCDF

I ADD 3

i :: LeI A ;;

: J i .I 1II1 11[1
!: 1 1 • i

\! j I!
Ir lNVl r>::~

~_-+.L ___ i..4!-~-==========.::=====..,-'--:::O
1

Cl B

Fig. 2. The structure of a BeD adder

10 GY. CSOPAKI

An example for a structure, describing structure of a BCD adder (Fig. 2): -

STRUCTURE BCDF.
INPUTS: A, B 4 BITS 1 DEC DIGIT; Cl.
OUTPUTS: S 4 BITS 1 DEC DIGIT; CO.
ELEMENTS: ADDER: ADDl (A,6DEC, ° BIN, *, *),

ADD2(*,B,CI, *, *),
ADD3(*, 7f~,0BIN, *,S);

INV: INVl (*, *).
CONNECTIONS: ADD2. S-ADD3.A,

BCDFEND.

ADD2. CO-INVl. A-CO,
INVl. Y-ADD3. B (l)-ADD3.B (3),
ADD3. B(0)-ADD3.B(2)-0 BIN.

In this example ADDl, ADD2 and ADD3 are names of copies of ADDER, which
is four bit binary fuU adder.

3. Test procedure

Let us consider two descriptions of the same digital system. One is the behav
ioural description, a type, the other is a structural one, a structure. Let us assume
that all the elements in the structure are defined, thus both type and structure can be
tested by simulation using the same input data.

The results of the two tests must be identical if the model is correct. This compar
ison is the last step of the process. A test set is specified by type description since it
must contain all functions expected from the given type. On the other hand the struc
ture may contain additional, unspecified functions, too. This way a positive result of
the comparison does not mean identity of type and structure indicating only that the
structure fulfils the specified requirements.

If the same structure is tested for a different type description, as necessary in
bottom-up approaches, it mayor may not fulfil additional or changed requirements.

Comparison means an evaluation, whether the set of events describing the be
haviour of the type is a complete subset of possible events of the respective structure.

This evaluation may be performed at different levels. Obviously the evaluation
on the lowest level is easy, because only numeric result-values of simulation must be
compared, but simulation must be done for all possible values and combinations of
inputs within the region of specified input value set.

HARDWARE DESCRIPTION LANGUAGE 11

Summary

The hardware design language described in this article was developed for the
CARS system. System CARS has been developed to assist the designer in the synthe
sis phase of the digital system design. CARS applies a top-down structured approach
in the design process and can be used at any user defined level of refinement. CARS
does not pose any restriction on the creative work of the designer, but it only gives
means to describe his concepts and tools to check his results. The design language
developed for CARS is well suited to describe behavioural concepts and structures as
well. One of the most important features is that the designer can use the same lan
guage elements for the behavioural and for the structural description.

References

1. CSOPAKI, Gy.: Hardware description language for design of digital equipment. Proc. of the Simu
lation in Research and Development Elsevier Science Publishers B. V. (North Holland) 1985.

2. CSOPAKI Gy.: Hardwarebeschreibungssprache filr Darstellung digitaler, logischer Systeme. Ta
gungsberichte Heft. 10. 1986.4. Symposium Grundlagen und Anwendung der Informatik. Wis
senschaftliche Tagung. Febr. 1986.

3. CsOPAKI, Gy.: Digitalis integralt aramkorok specifikaci6ja. A Mikroelektronikai berendezes
orientalt aramkorok tervezese konyv 6. resze. Szerkeszt6: Dr. Tarnay Kalman EDUSYS. 1984.

4. BoHUs, M.-CsoPAKI, Gy.-FILP A.-HINSENKAMP, A.-MATE, L.: Computer aid for recoursive
synthesis. Working paper. Computer and Automation Institute, Hungarian Academy of Sci
ences. 1982.

5. COMPL\NDER, H. D.-JANKU, J. A.: Top down approach to LSI system design. Computer Design.
Vol. 13. No. 8. 1974.

6. HILL, D.-van CLEEMPUT, W.: SABLE a tool for generating structured multi-level simulation.
Proc. of. 16th Design Automation Conference, San Diego, 1979.

Dr. Gyula CSOPAKl H-1521 Budapest pf. 91.

