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Abstract 

A variational method using global approximation is extended to the analysis of the low-fre­
quency field of exterior boundary value problems. The method is presented through the example of 
computing the current distribution of an earthing conductor. Using a T - Q approach, an approxi­
mate solution of Helmholtz's equation is generated with the prescribed Dirichlet and Neumann 
boundary conditions, and also the approximate conditions at infinity are satisfied. The boundary 
surfaces of the region examined are assumed to be described or approximated by piecewise analytical 
functions. The satisfacion of the prescribed boundary conditions is ensured by means ofR-functions. 

Introduction 

Electromagnetic field problems frequently lead to the examination of unbounded 
regions. Integral equation methods are well suited to problems of this kind [1], [2]. 

Since variational methods are primarily used to investigate closed regions, some 
authors employ a hybrid method combining the variational approach with the bound­
ary element method to calculate the electromagnetic field in open regions [3], [4]. 

The development of the finite element and global variational methods. however, 
brought about a continuous effort to make the variational approach capable of treat­
ing regions with open boundaries. One method used in conjunction with the finite 
element method involves the introduction of so-called infinite elements [5], [6], [7]. 
Other authors employ ballooning techniques to solve differential equations in open 
regions [8], [9]. One possibility to use global approximation in conjunction with vari­
ational methods is offered by the use ofR-functions. Reference [10] introduced a method 
for generating an approximate solution to Laplace equation in unbounded regions. 

The present paper extends the global variational method to calculating low­
frequency electromagnetic fields in open regions. The method is presented through 
the example of computing the current distribution of an earthing conductor. The 
problem is axi-symmetric and the potentials T - Q are introduced for the solution 
[11], [12], [13]. The solution of the Helmholtz equation is reduced by means of varia-
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tional calculus to an extremum problem. The minimizing function is approximated 
by a function series in accordance with Ritz's method. The satisfaction of the pre­
scribed Dirichlet and Neumann boundary conditions as well as of the conditions at 
infinity is ensured by the employment of R-functions [14], [15]. 

Differential equation and boundary conditions 

Consider the following problem. An ideal cylindrical conductor of radius ro and 
length I is immersed in a medium of conductivity G as shown in Fig. la. The sinusoidal 
current of the earthing conductor with peak value 10 leaves the conductor over its 
surface. Let us examine the distribution of current density in the conducting medium 
in case of low-frequency excitation with the effect of the eddy current in the medium 
also taken into account. Let us determine the earthing impedance of the medium. 
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Fig. 1. a: The arrangement of the earthing condu.;:;tor b: Planar section of the problem 

In cylindrical coordinates, a two-dimensional problem is arrived at in view of the 
axi-symmetry of layout. In the planar section shown in Fig. 1 b, r" denotes the sur­
face of the ideal conductor. Current density enters the medium examined perpendic­
ular to this surface. F 1 denotes the boundary of the conducting medium. Current 
density is tangential along this surface. The symmetry axis of the layout is at r=O. 
v is the outer normal of the region examined. 

The electromagnetic field ensuing in the conducting medium is described by 
Maxwell equations [16]. Displacement currents are neglected, and the examination 
is restricted to the field LTl the medium of conductivity G. Using the potentials A - CP, 
the electromagnetic field can be described by a two-component vector potential A 
since the electric field has rand z components in the conducting medium whereas the 
magnetic field is tp-directed [17]. However, using the potentials T - Q, the problem 
can be solved with the aid of a single component vector potential, too [11], [12], [13]. 
Since 

divJ = 0 (1) 
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in the region examined, the current density can be written as the curl of a cp-directed 
vector potential (T = Te'P): 

J = curIT. (2) 

According to Ampere's law: 

cmIH = J = curlT, (3) 

so the magnetic field intensity is 

H = T-gradQ, (4) 

where Q is the magnetic scalar potential. Faraday's law yields the following for the 
potentials: 

curl (~ curl T) = - jflOJ (T - grad Q). 

In case of homogeneous, isotropic medium, (5) is as follows: 

curl curl T + j f.1OJ(J T = jOJ,ll(J grad Q. 

(5) 

(6) 

The fact that the magnetic field is free of sources, yields the following for the scalar 
potential: 

div grad Q = div T. (7) 

The divergence of the electric vector potential T being zero, the scalar potential Q 
must obey Laplace's equation. In view of the axi-symmetry of the problem and mak­
ing use of the fact that the magnetic field is cp-directed, (7) and (4) imply the solution 
Q = constant in the region examined: 

Q = const, grad Q = 0 

and the magnetic field from (4) is 

H=T. 

(8) 

(9) 

In view of (6), the vector potential T can be obtained as the solution of the homo­
geneous Helmholtz equation 

curl curl T + jf.1OJ(J T = O. (10) 

The vector potential obeying the differential equation (10) must satisfy the follow­
ing boundary conditions. 

Along the surface riJ of the studied region where the current density enters per­
pendicularly, the vector potential T satisfies the homogeneous Neumann boundary 
condition: 

(curl T) X Ivlr" = o. (11) 

Along the boundary r 1 of the conducting medium and, in view ofaxi-symmetry, on 
the z-axis (at 1'=0), too, the current density is tangential: 

(curl T) vlrl = 0, (curIT)vlr=o = O. (12) 
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Taking into account that v = -e: on the surface 11> and that 

aT 1 a(rT) 
curIT = -<'jer+--n-e_, 

uZ r ur -
(13) 

the following Dirichlet boundary condition is obtained on the boundary r1 of the 
conducting medium : 

rTIT, = rT(z = 0, r) = const. (14) 

In view of mu-symmetry, the vector potential assumes the value zero at /"=0: 

Tlr=o = o. (15) 

The value of the constant in eq. (14) can be determined from the condition that the 
value of the current entering the medium along rh is 10 : 

10 = j(curIT)da = g5Tdl = T(z = 0,r)2nr, (16) 
a I 

where I is the curve bounding the surface a in the plane z=O. In view of (16), the 
condition (14) is as follows: 

TIT = T(r, z = 0) =~. (17) 
1 2rrc 

At infinity, both the electric and the magnetic field are zero. So, the vector poten­
tial T satisfying the differential equation (10) must vanish at infinity as 1/12 where (! 

is the distance ofthe point (r, z) from the origin in a planar section of the region: 

lim T = 0(1/12). 
(2-= 

Application of the variational method, 
satisfaction of the boundary conditions 

(18) 

The approximate solution of the differential equation (10) satisfying the Neu­
mann boundary condition (11), the Dirichlet boundary conditions (15) and (17), as 
well as the behaviour (18) at infinity will be generated with the aid of a variational cal­
culus. As known form literature [18], [19], the vector potential formally extremizing 
the functional 

W = j j (curl T curl T* + jPWG TT*) r dr dz- f T* (curl TX v) dr (19) 
=,r rh 

satisfies the differential equation (10). In (19), T* denotes the conjugate of T. Since 
the Neumann boundary condition (11) on the boundary rh of the studied region is a 
natural condition of the functional (19), only the satisfaction of the Dirichlet boundary 
conditions (15), (17) on the surface r 1 and at r=O as well as the condition (18) on the 
vector potential T at infinity will be treated. 
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~ In order to satisfy the Dirichlet boundary conditions (15) and (17), the vector 
potential T is decomposed as the sum of two functions [20], [10]: 

T = To+T", (20) 

where To is a known function, continuous in the region examined, which satisfies the 
Dirichlet boundary conditions (14), (17) on the bounding surface Tl and on the sym­
metry axis l' = 0 : 

10 
Toh = -2 e"" Tiilr=o = O. rrc 

(21) 

In (20), T" is an unknown function satisfying homogeneous Dirichlet boundary con­
ditions on Tl and at 1'=0: 

(22) 

The condition (18) on the vector potential at infinity can be satisfied by ensuring that 
both terms of the potential vanish at least as l/e at infinity. Therefore, the term T" 
of the potential is selected to make it vanish as 1/ Q at infinity. The other term To of the 
potential function, which satisfies Dirichlet's boundary conditions on the boundary 
Tl and on the symmetry axis, is constructed to make it vanish at infinity as 1/ Q too: 

lim T~ = o(l/Q), 
Q-= 

lim To = o(1/Q). 
Q-= 

(23) 

(24) 

The term T" of the potential function (20) is approximated according to Ritz's method 
[20], [21] by the first n terms of a function set, complete in the studied region: 

n 
T" ;:::: TIl = 2: akh wDe-i'Q eo = FT a, 

k=l ' 
(25) 

where y = jljWf.1(j , h is the k-th element of the approximating function set, ak is the 
k-th unknown coefficient. In (25), >VD is an R-function defined in the studied region 
[14], [15]. }VD ensures the satisfaction of the homogeneous Dirichlet boundary con­
ditions on the boundary Tl and at r=O by the function Tn approximating the vector 
potential T" : 

(26) 

At infinity, the function WD satisfies the condition (23) prescribed for the function T" : 

lim }VD = 0 (l/Q). (27) 
11-= 
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Generation of the solution, construction of the fUIlctions To and !VD 

The functions To and !I'D introduced for the satisfaction of the boundary condi­
tions (15), (17), (18) are constructed with the aid of the R-functions established by 
V. L. Rvachev [14], [15]. 

On the boundary r 1 of the studied region and at r=O, the function To satisfying 
(21) can be constructed as follows, using the equations 

Wl(r, z) = z, 

w2 (r, z) = r 

of the bounding surface r 1 and of the symmetry axis [10]: 

T - 10 r -yw 
0--2 -0--" e de"" 

7r r"'+z-

(28) 

(29) 

where 'Y = l/jW/-lU, and \Vd is an R-function given by (30). The function To given in 
(29) varies as Io/2rn along the bounding surface 11 (at z=O) while it vanishes at 
r=O. At infinity, the function To given in (29) approaches zero as lie in view of 

O -'!r2-L _2 .... -y I"'· 
The function IVD ensuring the satisfaction on the homogeneous Dirichlet bound­

ary conditions prescribed for the function T" is constructed as follows. Since the 
function WD must satisfy the conditions (26) on the boundary r 1 and at r =0, an 
R-function Wd is to be constructed by R-conjunction from the equations (28) of the 
bounding surface r 1 and of the symmetry axis which vanishes on the boundary 11 of 
the studied region and at 1'=0: 

(30) 

Since the functions IVI and IV2 are monotonously increasing at infinity, 

grad IV! ~ O} 
grad w2 ~ 0 

if O<r<=, O<z<=, (31) 

so the function ll'd constructed in (30) is also monotonously increasing at infinity. 
Using the above properties of the function Wd' the function WD satisfying the condi­
tion (26) and (27) can be constructed as follows: 

HID = (A+e)2' 

where A is an arbitrary positive constant. 

(32) 

The elements of the approximating function set have been chosen to be Cheby­
shev polynomials. Since Chebsyhev polynomials are defined in the interval (-1, + 1), 
the points O<r<= and O<z<= of the infinite region have been transformed into 
the region O<~< 1 and 0<1/< 1, by the aid of the transformation ~=2In tan- 1 (zla) 
and 17 =2/n tan -1 (r/a), respectively. 
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The coefficients ak in the approximate function series (25) extremizing the func­
tion (19) have been computed from a set of complex, linear equations: 

(33) 
where 

Ar = f f curl F curl FT r dr dz, 

Ai = f f /1WuFFT r dr dz 
(34) 

and 
br = f f curl To curl Fr dr dz, 

bi = f f /1wuToFrdrdz. 
(35) 

Numerical results 

Numerical calculations have been carried out at 1"0/1= 1/2. The number of the 
terms n has been chosen as 11 =25. Knowing the vector potential T obtained by the 
solution of equ. (33), the distribution of the current density has been drawn at differ­
ent values of the skin depth b = v' 2/ /1Wb (Fig. 2). In Fig. 2a, the current distribution 
at D. C. excitation has been plotted. In the further diagrams (Figs. 2b-2f), the current 
density distribution at lib =0.2, 0.4, 0.6, 0.8 and 1.0 has been plotted. It is evident 

Fig. 2. Distribution of current density in the conducting medium at different skin depths. The same 
current flows between any two lines 

a) 

a: Distribution of current density at 
D. C. excitation 

b) 

b: Distribution of current density at 
1/0=.2 
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c: Distribution of current density at 
1/0=.4 
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e: Distribution of current density at 
1/0=.8 
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d) 

d: Distribution of current density at 
1/0=.6 

L __________________ _ 

f) 

f: Distribution of current density at 
1/0=1. 

from these diagrams that the current density tends to be confined to the vicinity ofthe 
bounding surface of the conducting medium as the frequency is increased (the skin 
depth is decreased). 

With the aid of Poynting's vector, the impedance on the surface of the conduct­
ing medium has been computed as a function of the distance from the ideal conduc­
tor: 

1 '1 
Z(z = 0, r) = If J -;:r(curl T)xT*I"r2ndr. 

o '0 

(36) 

For the cases I/o = 1.0 and I/o =0.6, the results are shown in Fig. 3. 
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Fig. 3. Impedance on the surface of the conducting medium against the distance from the earthing 
conductor. Ro is D. C.resistance. On curves 1. R/Ro, 2. X/Ra at 8=1, while on curves 3. R/Ro, 

4. R/Ra at 1/8=0,6. 

Ro is the D. C. resistance at r = 10 . l. 
The results indicate that the earthing impedance approaches the diffusion value 

at a greater distance from the earthing conductor as the frequency increases. 
In Figure 4, the earthing impedance at r= 10·1 has been plotted against I/b. 

Here, the continuous line indicates R/Ro and the broken line X/Ro' This dia­
gram also shows that both the resistive and reactive parts of the impedance increase 
with increasing frequency. It is also seen in the diagram that, although the accuracy 
of the approximation fluctuates, the real and the imaginary parts of the impedance 
approach a common value similarly to the case of an infinite half space. 
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Fig. 4. Impedance at r= 10 I against skin depth --R/Ro, - - -X/Ro, Ro is D. C. resistance 
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