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Abstract 

A computation method to smooth and differentiate data of the z=/(x, y) kind is introduced. 
Requiring only that the datapoints be equi-distant in x and equi-distant in y, smoothing parameters 
can be calculated for general use. The greatest advantage of the method is that even higher-level mixed 
partial derivatives can be calculated directly from the datapoints. 

Introduction 

Random errors in experimental data have necessitated the development of mathe­
matical and computation procedures for "filtering" the data; that is to say, removing 
a great part of the noise without losing any substantial amount of information. 

A widely-used mathematical method is that of the least-squares. [2, 3] Smoothing 
of the datapoints by considering only their 3-15 closest neighbors in the calculations, 
often gives the expected "filtering," but, in case of many hunderds of datapoints, the 
method is extremely slow and uneconomical. 

A simplified least-squares method, [4] which requires that the data be equi-dis­
tant in each variable, uses "smoothing" and "differentiation" parameters, providing 
an easy-to-use algorithm with dramatically reduced computer time. 

Discussion 

For the one-dimensional case, a polynomial P(X) =ao +a1x +a2x2 + ... allx" 
is used, in a way, that the measured (Yi) and the calculated (P(Xi)) values differ the 
least: 

m 
Z (P(Xi)-Yi)2 = min (1) 
;=1 

(1) is then differentiated by and solved for the a/so After that, the value of the poly­
nomial can be calculated in any point. 
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If the basic system has equal distances in the abcissa (Ax=const., between any 
two neighboring datapoints), then the P(Xi) values, and the derivatives of the P(xYs 
are calculated directly from the measured Yi values. 

If we choose a coordinate system in which xi=i, and the distance between two 
neighboring points is 1, so the center of smoothing is Xo =0, its first left-side neighbor 
is X-I = -1, the third right-side neighbor is Xa =3, and if only the nearest m of the 
left-side neighbors and the nearest m of the right-side neighbors are considered in the 
calculations for each point, then we have 

i=m 
M ~ ( . I ·n )2 = L.J ao + al . 1 + ... Tan· 1 - Yi (2) 

i=-M 

which must be now minimized. 

(3) 

aM ~ ( . ."). 0 -a = L.J ao + al· 1 + ... + an· 1 - Yi 1 = 
a1 i=-III 

where we have n + 1 linear equations. Now, we arrange the J:ik's in a matrix [1], the 
a/s in a column-vector [A], and the J:Yi . ik'S in a column-vector [Y]: 

Furthermore, it is easy to see, that 

[1]· [A] = [Y] 

P(O) = ao 

dP(O) 

di 

(4) 

(5) 

For a given m, [1] is easily calculated and the system is solved for the a/so We find that 

k! ak = p(k)(O) = ..:.i=_-;:;.;.11I-::-:: __ 
N(k) 

(6) 
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In (6), the N's are the normalization constants, the S)O)'s are the smoothing para­
meters, and the S)k)'S are the differentiation parameters. Since the S/s and the y/s 
are totally independent, the S/s will be the same if the degree of the polynomial and 
the value of 111 are unchanged. 

The greatest benefit (see (6)) is that the derivatives are calculated directly from the 
measured data_ 

When the parameters are used for smoothing only, we disregard the length of the 
interval (Lix), but for the rth derivatives (r= 1,2, ... ) the result must be multiplied 
by Lix-r. 

Our objective has been to develop a computation method, based on the same 
ideas, for two- and higher [5] dimensional data. The following polynomials could be 
used: 

Let us consider the two-dimensional case. First, the data must be equidistant 
in x(Lix=const.) and equi-distant in y(Liy=const.). The measured Zi values are put 
in a k X 1 matrix, where x changes along the rows and y changes along the columns. [1] 
In order to find the smoothing parameters, we use a coordinate system xi=i and 
Yj=j; the center of smoothing wiII always be the (0, 0) point. 

Similarly to the one-dimensional case, the 2111 nearest neighbors participate in the 
calculations, but now these are 2m neighbors in the x and 2m neighbors in the y 
directions; so, we shall use double summation. Putting i for x and j for y, and using 
the least-square method, we have 

111 m 
]v1= L: L: (ao+a1·i+ ... +as·rf+···-Zij)2 (7) 

i=-m j=-m 

Then, the minimization gives 

(8) 

m m 

L: L: (ao+ al· i+ ... + as· i'f+ ... -zij)i'f = ° 
i=-m j=-m 

m tU 

Now we put the L: L: i'jP values in matrix [K], the a values in column-vector 
i=-mj=-m 

[A] and another colunm-vector, [Z] will have the 

we can write 
[K] . [A] = [Z] 

5 P. P. Electrical 33/1-2 

111 m.a .b L: L: 1 ] • Zi' values. Then, .. J 
l=-m )=-m 

(9) 
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The results for the a's are again related to the derivatives (now partial derivatives): 

m m 
Z Z S~~'p) 2,. 

" _ oP(O,O) _ i=-m j=-m I} IJ 
r.p.as - oi'ojP - -'-----"--,-N-:c;(~r,·p-):---- (10) 

where S\~ O)'s are smoothing, the S\j,b)'S are differentiation parameters (if a or b is 
nonzero), the N's are the normalization constants and Zij's are the values of the 
datapoints around Zo,o which is to be smoothed and/or differentiated. 

If the x-interval is .dx and the y-interval is .dy, then the result must be multiplied 
by .dx-r .dy-P for the mixed partial derivative, rth order in x and pth order in y. 

The results can be generalized to higher dimensions. [5]. 

Results and discussion 

Table 1 contains the parameters for one-dimensional smoothing, using third­
degree polynomial, P=aO+alx+a2x2+asxS, with m=2. 

Table I 
Smoothing and Differentiation Parameters 

for One-Dimensional Data 

111 Smooth dPjdx d2P/dx2 d3P/dx3 

-2 -3 2 -1 
-1 12 -8 -1 2 

0 17 0 -2 0 
1 12 8 -1 -2 
2 -3 -1 2 

N 35 12 7 2 

Nis the normalization constant. To find the first derivative, for example, one has 
to multiply the second left-side value by 1, the first by - 8, the point itself by 0, the 
first right-side neighbor by 8 and the second by -1, and then the sum of the calcu­
lated values is divided by 12 and divided by the stepsize (.dx). 

For the two-dimensional case the data wiII be in a data-matrix and the smoothing 
and the differentiation parameters are in a matrix, too. 

We have calculated the parameters for three different two-variable polynomials. 
Table Il contains the numbers for the P 2 = ao + a1 • x + a2 • Y smoothing curve. Table 
III for the PS=aO+al·x+a2·y+a3·x2+a4·xy+a5·y2, and Table IV for the 
P4=aO+a1· x+a2· y+as ' x 2+a4xy+a5. y2+ as ' xS+ai . x2y+asxy2+a9. y3. 

Depending on the data the user can choose the one that apparently best fits the 
measured values. For the sake of better understanding, we provide the mapping of the 
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parameters, in case of 111=2: 

(-2,2)(-1,2)(0,2)(1,2)(2,2) 

t (-2, 1)(-1, 1)(0, 1)(1, 1)(2, 1) 

Y (- 2,0)(-1,0) (0,0)(1,0)(2,0) 

(-2, -1)(-1, -1)(0, -1)(1, -1)(2, 1) 

(-2, -2)(-1, -2)(0, -2)(1, -2)(2, -2) 

x-
The first number in the parentheses is the j index and the second is the i index. 

Table II 
Smooting and Differentiation Parameters 

Smoothing: 

N= 25 

oP/ox: -2 -1 0 2 
-2 -1 0 2 
-2 -1 0 2 N= 50 
-2 -1 0 2 
-2 -1 0 2 
'~-.---"""." .. ".".".".".""." .. "."."." 

oP/oy: 2 2 2 2 2 

0 0 0 0 0 N= 50 
-1 -1 -1 -1 -1 
-2 -2 -2 -2 -2 

The parameters have been tested with generated data. The data-matrices in the 
size of 60X48 contained the calculated values of Zl =8.0+273.0x2+5.0· xy2, Z2= 
=3.8+2.3x-4.5y, and z3=-7.7+5.5.x+11.3·y2, with a random error ranging 
from -10% to + 10% of the calculated values. As previously mentioned, the data­
points are put in the data-matrix in a way that x changes along the rows and y 
changes along the columns. The stepsize for x was 0.1, for y it was 0.01. 

The calculations were so lengthy that even the generated values had to be calcu­
lated by a Hewlett-Packard 85 personal computer. 

For Zl' the parameters from Table IV were used; for Z2 from Table H; and for 
Z3 from Table HI. The results proved to be excellent; the errors were reduced to 1/10-

5* 
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Table III 
Smoothing and Differentiation Parameters 

P3 = ao+atx+a2y+a3x2+a.lxy+asy2 

Smoothing: -13 2 7 2 -13 
2 17 22 17 2 
7 22 27 22 7 N= 175 
2 17 22 17 2 

-13 2 7 2 -13 
.~w~.w~ ••••• w •••••••••••••••••••••••••••• 

oP/ox: -2 -1 0 1 2 
-2 -1 0 1 2 
-2 -1 0 2 N= 50 
-2 -1 0 2 
-2 -1 0 2 

. ______ o. _______ ....... ___________ •• __ ...• _. 

oP/oy: 2 2 2 2 2 
1 

0 0 0 0 0 N= 50 
-1 -1 -1 -1 -1 
-2 -2 -2 -2 -2 

.- _____ 0 _______ .. _----------------------_. 

OP2/0X": 2 -1 -2 -1 2 
2 -1 -2 -1 2 
2 -1 -2 -1 2 N= 35 
2 -1 -2 -1 2 
2 -1 -2 -1 2 

---------------------------------------

oP"/oy": 2 2 2 2 2 
-1 -1 -1 -1 -1 
-2 -2 -2 -2 -2 N= 35 
-1 -1 -1 -J -1 

2 2 2 2 2 
.- __ -__ 0------------------------------_ .. 

oP"/oxoy: -4 -2 0 2 4 
-2 -1 0 2 

0 0 0 0 0 IV = 100 
2 0 -1 -2 
4 2 0 -2 -4 

1/20 and even less fraction of the original. Further improvement could be made by 
using m=3 instead of 2. However, with m=2 416 peripherial datapoints are lost 
(these are used for the calculations but they themselves can not be treated because 
they do not have enough neighboring datapoints around them) with m=3 even more 
would have been lost (608). 
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Table IV 
Smoothing and Differentiation Parameters 

Smoothing: -13 2 7 2 -13 
2 17 22 17 2 
7 22 27 22 7 
2 17 22 17 2 N= 175 

-13 2 7 2 -13 
---.. -----_.- .. _------- .. _---_ ..... _- ......... 

oP/ox: 31 -44 0 44 -31 
-5 -62 0 62 5 

-17 68 0 68 17 
-5 -62 0 62 5 N=420 
31 -44 0 44 -31 

..... --_ ...... __ ... _-_ .. _- ... -................ 

oP/oy: -31 5 17 5 -31 
44 62 68 62 44 
0 0 0 0 0 N= 420 

-44 -62 -68 -62 -44 
31 -5 -17 -5 31 

....... _- ............ _- ....................... 

2 -2 -1 2 
2 -1 -2 -1 2 
2 -1 -2 -1 2 N= 35 
2 -1 -2 -1 2 
2 -1 -2 -1 2 

.. -_. __ .... __ .. -.----- ......... -_ ............. 

2 2 2 2 2 
-1 -1 -1 -1 -1 
-2 -2 -2 -2 -2 N= 35 

1 -1 -1 -1 -1 
2 2 2 2 2 

................................... -.- ... __ ... 

02P/oxoy: -4 -2 0 2 4 
-2 -1 0 2 

0 0 0 0 0 N= 100 
.2 0 -1 2 
4 2 0 -2 -4 

................. __ .................. __ ....... 

o"P/ox3
: -1 2 0 -2 

-1 2 0 -2 
2 0 -2 N=lO 

-1 2 0 -2 
-1 2 0 -2 

............. -_ .............................. -

1 
-2 -2 -2 -2 -2 

0 0 0 0 0 N=lO 
.2 2 2 2 2 

-1 -1 -1 -1 -1 
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Table IV continued 

[PPjax"ay: 4 -2 -4 -2 4 
2 -1 -2 -1 2 
0 0 0 0 0 N= 70 

-2 1 2 1 -2 
-4 2 4 2 -4 

._---------_ ...... ,,--------.......................... __ . 

-4 -2 0 2 4 
2 0 -1 -2 
4 2 0 -2 -4 N= 70 
2 0 -1 -2 

-4 -2 0 2 4 

Conclusion 

Using the calculated parameters, the computations have proved to be extremely 
fast and very accurate. However, if the polynomials of the datapoints had not been 
known, there would have been the question, immediately: Which parameters to use? 
This is the case with experimental datapoints, too. The best way seems to be to start 
calculating the third-order partial derivatives with the parameters of Table IV, and if 
the results are all zeros (or very close to zero), but the second-order derivatives are not 
zeroes, then the data show a P3-behavior. If the second-order derivatives are zeros, 
too, then the data must be the P2 = ao + a1x + a2 • Y type. 
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