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Abstract 

This paper introduces a new method for signal representation. It is shown that a periodic 
signal is uniquely defined by its local extrema if the band limit ratio of the signal is 
less than an octave. A way of adaptive sampling, introduced among these lines, exhibits 
advantageous properties of possible interest, e.g., for the detection of the pitch frequency. 

£( eywords: adaptive sampling, pitch frequency detection. 

Introduction 

Uniform sampling is frequently used for the characterization of a time func­
tion. However, occasionally the signal is determined with its nonuniform 
samples. A generalization of the sampling theorem for such purpose is given 
in full details in (FREEMAN (1965)). Nonuniform sampling is mostly applied 
for analysis and synthesis of digital filters (THOMAS and LUTTE (1972); WOJT­

KIEWICZ et al (1985); WEINBERG and Lru (1974)) 

This paper is divided into two main parts. First we introduce nonuni­
form sampling and as a special case of this the periodic non uniform sampling 
of a signal and its first derivative. 

Next we show that a periodic signal is completely specified by the 
knowledge of its local extrema if the band limit ratio of the signal is less 
than an octave. Furthermore, we discuss the basic properties of the adaptive 
sampling. 

Sampling of a Continuous-Time Function 

It is often necessary to reduce a continuous-time function to a series of 
samples. If the interval between samples is uniformly placed then what we 
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have is the classical form of Shannon sampling theorem. In this section, 
however, our attention will be focused not on this case but on nonuniform 
sampling (see FREEMAN (1965)). 

Uniform Sampling and the Sampling Theorem 

Let a continuous function x(t) be bandlimited and given in the following 
form 

B 

x(t) J ejwt df3(w). 
-B 

The function x(t) can be written 

where 

( ) 
_ ~ ( )sin(T(t - tk)) 

x t - L.. x tk w ( )' 
k=-co T t - tk 

27i 
wo= -, 

TO 

Wo 
and B < 2" 

(1) 

(2) 

x(t) is uniquely described by the knowledge of its values X(tk) for all integers 
-00 < k < 00. 

Sampling may be regarded as a simple form of multiplication between 
two time-dependent quantities. The sampled signal, denoted by y(t) may 
be approximately 

y(t) = x(t)· v(t), (3) 

where v( t) is a periodic train of rectangular pulses of duration .6,.. The func­
tion v(t) is shown in Fig. 1. By Fourier expansion 

co 

v(t) = I: (4) 
k=-co 

where 

_ b.6,.sin(k7i.6,./TO) 
Ck = C-k = - . , 

TO k7i .6,. / TO 

and the over scoring indicates the complex conjugate. We have a simpler 
form if b.6,./TO = 1. By putting Eq. (1) and Eq. (4) into Eq. (3) we obtain 
the following form 

(5) 
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Fig. 1. Uniformly placed sampling function 

Referring to Eq. (5) if .6. ~ TO then we will get the sampling theorem (see 
FREEMAN (1965»). 

Periodic Nonuniform Sampling 

Consider a function x(t) which is non uniformly sampled. More distinctly 
assume the spacing between samples of ;r(t) is nonuniform, but with a 
pattern which is periodic with period T = nTo. This sampling pattern is 
shown in Fig. 2. We distinguish functions Vl(t), vz(t), ... , vn(t) and let 

la 

> 

11 

Fig. 2. Nonuniform sampling pattern periodically recurring with T 
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Yi(t) = X(t) . Vi(t), where i = 1, 2, ... , n. Using a time independent linear 
transformation Hi and a summation, we obtain Yo(t) as it may be seen in 
Fig. 3. We would like to determine the transfer function Hi so that the 

Y1 (t ) Y; (t) 

.... 
ClJ 

x 
Yj (t) yT (t) Yo (t) ClJ 

a. 

! ::J 

v (t) 
~ 

Yn(~(t) 
Hn 

Fig. 3. Block diagram of recovering 

function x(t) can be recovered by filtering yo(t) with an ideal bandpass filter 
at interval (-nwo/2, nwo/2. Consider, for so doing, the Fourier series of the 
sampling function Vi(t) which is periodic with period T = nTo. It is known 
that 

,00 k 
1 ·[::.::'.ll.tk.6.<I>] Vi(t) = - L qeJ n +. i, 

n k=-oo 

(6) 

w here Wo = 2ii / TO and 

!:l<Pi = __ I (i - 1) + -! 2r [ !:IT.] 
n TO 

(7) 

By letting Ai = exp (j!:lif!i) in Eq. (6) 

(8) 

Combining Eq. (1) and Eq. (8), we find the following simultaneous equations 
for Yi(t) , where i 1,2, ... , nand B = nwo/2 , 
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(9) 

By a little manipulation and introducing the transformation Hi, we can 
write 

(10) 

Next divide the interval-B < w < B into subintervals, each oflength Bin. 
Consider one of them, e.g., the subinterval (W1 = (n - Iln)B, W2 = B). The 
spectrum in this subinterval can be expressed as a sum of a finite number 
of terms in Eq. (10). As just -B < w < B is of our present interest, it is 
sufficient to use only the terms including k = 0, 1, 2, ... , n - 1. If k = 0 
then we should have get the spectrum of the original signal concerning this 
subinterval. This may be seen most clearly by referring to Fig. 4. For a 

-8 B 

I / 
k=O 

k= -1 

k=1 

Fig. 4. The spectrum of nonuniformly sampled signal 
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precise recovery of the spectrum of x(t) in (Wl,W2) we need 

n n ~ ~ 

~yT(t)lk=O = ?= ~ J coA?Hieiwt d(3(w) = J eiwt d(3(w). (11) 
.=1 .=1 Wl Wl 

Accordingly 
(12) 

If k = 1, 2, ... , n - 1 then the sum of the spectrum must be zero. By this 
requirement, e.g. k = n - 1, 

cn_1A~-1 RI + cn_lA~-l H2 + ... + cn_lA~-l Hn = O. (13) 

From Eq. (12) and Eq. (13) we obtain n simultaneous equations with un­
known transfer functions HI, H2, . .. , Hn. It is instructive to write these in 
the following matrix form 

BH=N. (14) 

Here 

'10 Cor 1 coAg coA~ 
clAi clA~ cIA; 

B= c2-4I c2A~ c2A; 

An- 1 Cn-l 1 An- 1 
Cn-l -2 An-l Cn-l- n 

HI n 

H2 0 

H- H3 N 0 

L Hn 0 

Taking out the Co constant from Eq. (14) and cancelled with cr/co, c21 Co, ... , 
cnl Co, it can be written as 

coAR = N, (15) 

where 

AO 
1 

AO 
2 

AO 
n 

Ai A~ A; 

A= A2 
1 

A2 
2 

A2 
n 

An- 1 
1 

An - 1 
- 2 

An-l 
n 
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The solution of Eq. (15) may be obtained as 

(16) 

given that the inverse of the matrix A exists. The matrix A is recognized 
to be a Vandermonde matrix. If the samples are distinct at the interval T 
then AI, A2 , • •• , An have different values, furthermore, none of them vanish, 
thus A-I exists. This is valid on each subinterval of ( - B, B). By symmetry 
Hi( -jw) = Hi(jW). It is to be noticed that Hb H2' ... , Hn are physically 
nonrealizable filters. 

We thus conclude that a signal x(t), which is bandlimited to the inter­
val ( - B, B), is completely specified by the knowledge of n arbitrarily spaced 
distinct samples within an interval T = nTo but periodically recurring with 
T. 

Periodic Nonuniforrn Sampling of a Signal and Its First Derivative 

Now we examine a more general form of nonuniform sampling. Consider a 
function x(t) and its first derivative x'(t) which are non uniformly sampled. 
Fig. 5 shows only the instants of sampling. We must have n distinct samples 

> 

I I 

I I 

T = 2n'l'0 

Fig. 5. Time instants for sampling of x( t) and x' (t) 

from x(t) and x'(t) at the same instants (all 2n) at period T = 2nTo. In 
a similar way to the one adapted in the previous section, we distinguish 
functions Vl(t), V2(t), ... , vn(t), where i = 1,2, ... , n and multiply them by 
x(t) and x'(t). 
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Accordingly 

Y1(t) x(t) . V1(t), 

Yi( t) x(t) . Vi(t), 

Yn(t) x(t) . vn(t), 

Yn+1(t) x/et) . V1(t), (17) 

Y2i( t) x'(t) . Vi(t), 

Y2n(t) x'(t) . Vn(t), 

Therefore, the ith sampling function can be written as 

(18) 

Observe that the period of the sampling function is T = 2nro for the present 
case. The ith and the 2ith sampled signals are the following 

. 1 [1 ~ k·~ 1 eJwt dj3(w) . 2n kf::oo qAi'eJ 
2n t , 

. 1 .~ 

[
B 1 [00 1 _~ jwe

Jwt 
dj3( w) . 2n k~OO CkAf eJ 

2n t . 

Doing the multiplication in Eq. (19) and using the notation 

kwo nk = --w 
2n 

(19) 

where k = 0, 1, 2, ... , 2n - 1 furthermore after lengthy transformations we 
can write simultaneous equations in the following matrix form 

AH=N. (20) 
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Here 

AO 
1 

AO n jwA~ jwA~ 

A n- 1 An- 1 'n A n- 1 'n An-l 
A= 1 n J n-l 1 J n-1 n 

An An jnnAl jnnA~ 1 n 

A 2n- 1 
1 

A 2n-1 n 'n A 2n- 1 
J 2n-l 1 'n A 2n-l J 2n-l n 

and 

From Eq. (20) we can obtain 

H= A-IN. (21) 

By considerations with the method presented in the previous section it can 
be proved that A-I exists. 

Now we can conclude that a signal x(t) which is bandlimited to the 
interval (-B, B), is completely specified by the knowledge of both n arbit­
rarily spaced distinct samples from xCi) and in the same instants n samples 
from x'(t) within an interval T = 2nTo but periodically recurring with T. 
(The number of all samples is 2n.) 

Periodic Nonuniform Sampling of a Periodic Signal 

Let us have some heuristic expectation that a signal can be described by 
the knowledge of its local extrema or distances between zero crossings. This 
description will be called adaptive sampling in what follows as the instants 
of samples are not determined by a clock but are adapted to the signal. As 
the extrema of a signal cannot be given in a closed form, we have to look for 
some other way to solve the problem. For the sake of simplicity let us merely 
consider the periodic signals. However, the results can be generalized both 
in time and frequencv domain. 
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Zero Crossings of a Periodic Signal 

A bandlimited and periodic signal of practical interest always can be written 
in the following form 

nH nH 

x(t) = L: (an sin nwt + bn cos nwt) = L: Cn sine nwt + Pn), (22) 

where n is a positive integer and nL S; nH. It is sure that x( t) is periodic 
with T = 27r/w which is not always the shortest time period .. If we denote 
the shortest time period by Tp, then Tp S; T. Let the instant t 0 be at a 
zero crossing with a positive slope of signal xCi) (Fig. 6). The signal x(t) 

-,~~--~--~------~I~----~ 
ti~ti.1 t 

T = 21T ( Cl.) I 
r--------------------------------------~~ 

Fig. 6. Zero crossings of a signal in the interval [0, T) 

has i zero crossings in [O~ T). It can be proved that 

(23) 

where h(n£l.')) and h(nHw) are the numbers of zero crossings of the lowest 
a.nd the highest components in Eq. (22) in the same interval. To prove this 
sta.tement we write the gth primitive function of x( t) as 

G(t) = J ... J x(t) dt .. · dt. 

1 9 

(24) 

The function G(t) is periodic with period T, as well, since all of linearly 
transformed functions are periodic with the same period. The Fourier series 
of G(t) have a similar form as Eq. (22). It is sufficient to examine the 
magnitude of components. They are the following 

CnL cnL + 1 cnH 
(nLw)g, ((nL + l)w)g , ... , (nHw)g . (25) 
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Referring to foregoing series, it may be seen that the first term could be 
arbitrarily large comparing with the others if we increase the value of g. So 
we can obtain 

( cnL . [ 7r] () G t) = ( )g sm n Lwt + cP L + 9 - + E.t . 
nLw 2 . 

(26) 

The number of zero crossings G(t) is given by the frequency of component 
sin (nLwt + <p). Denote by h( nLw) the number of zero crossings of this com­
ponent at interval [0, T). If we make the first derivative function of G(t) 
then we obtain the (g - 1 )th primitive function which has zero crossings at 
the local extrema of G(t). By Rolle's theorem the derivative function must 
be zero at least once between two successive zero crossings. So the (g - 1 )th 
primitive function has at least the same number of zero crossings as the 
function G(t). Continuing that until we get back x(t), thus we may 'mite 

(27) 

Using now the gth derivative function of x(t), we can easily prove, in a 
similar way, that 

(28) 

Consequently, if a signal x(t) is periodic with T and has i zero crossings at 
interval [0, T) then the following inequality holds: 

(29) 

Adaptive Sampling of a Periodic Signal 

Let x(t) be a periodic signal. By Eq. (22) 

nH 

x(t) = 2: en sin(nwt + <Pnl . (30) 
n=nL 

Now we consider the samples of this function at the local extrema as shown 
in Fig. 7. Let 

and 

Accordingly 

(31) 
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T=2Tr/w 

Fig. 7. Adapted samples of a signal 

Statement. If wH < 2WL then the function x(t) is uniquely determined 
by the set {Xl, 6.t1, Xz, .6..tz, ... ,Xi, 6.td. In other words, if the Fourier 
components of x( t) possess a band limit ratio less than an octave then the 
function is completely specified by the knowledge of its adapted samples. 

Proof. If we have 2i uniform samples at the interval [0, T), as can be seen 
in Fig. 8, then TO = T /2i and the frequency of sampling is 

2r. 2i 
Wo = - = 2r.-. 

TO T 

From inequality Eq. (29) it results that the signal has at least i = 2nL zero 

=+ ..... 
x 

'1'0 '1'0 "ro -Co 
.1 1 ., 1 .1 

1 -1 1 11 r ~ 1 
T = 2i-co 

11 

Fig. 8. Equivalent uniformly placed sampling instants 

crossings and by substituting this in Eq. (32) we obtain 

2" 
Wo = T(2.2nL) 4nLw = 4WL· 

Since WH < 2WL, using Eq. (33) it can be written 

2WH < Wo. 

1:'0 

(33) 

(34) 
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The signal x(t) is uniquely described with i uniform spaced samples, namely 
2nL ::; i, so the inequality Eq. (34) is always satisfied. In the previous 
section it was proved that a bandlimited signal is completely specified by 
the knowledge of n arbitrary spaced distinct samples from x(t) and x'(t) at 
the interval [0, T), where T = 2nTo. The periodic signal x(t) has at least i 
local extrema at interval [0, T), hence T = 2iTo. 

Now we conclude that a periodic signal which has a band limit ratio 
less than an octave can be uniquely reconstructed from a set of its adapted 
samples. 

Basic Properties of the Adaptive Sampling 

Before we examine the basic properties of the adaptive sampling, let us 
consider the sum of periodic signals. If a signal XI(t) is periodic with TI 
and xz(t) with Tz then the sum x(t) = XI(t) + X2(t) can be periodic with T 
only if 

(305) 

where nl and nz are positive integers. Let us suppose that there exists a 
transformation 0 which determines the time period of a periodic function, 
so 

(36) 

This transformation 0 is nonlinear since, as it can be seen from Eq. (35), 
the principle of superposition is not satisfied, that is, 

(37) 

As we have already mentioned, the adaptive sampling is a transfor­
mation which determines a set of samples of a bandlimited periodic signal. 
We shall denote this with AS (Adaptive Sampling) and examine its basic 
properties. 

Property 1. The adaptive sampling in a geometrical sense maps similar 
signals into similar sets, that is 

AS {x(t)} 

AS { ax(;3t)} 
{Xl, D.tl, Xz, D.tz,· .. ,Xi, D.td , 
{aXI' ;3D.tl' axz, ,BD.t2, .,. ,axi, ;3D.td. 

This property is evident by referring to Fig. 7. In addition, the adaptive 
sampling is time-invariant, since 
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Property 2. If a signal x(t) is periodic then the adapted samples are pe­

riodic, too, that is Xk = xk+i and ,6.tk = ,6.tk+i. Thus the principle of 
superposition is not satisfied so 

Every linear transformation possesses the first property but the adaptive 
sampling is a nonlinear transformation as we have proven before. 

Property 3. If we perturb the adapted samples of the signal x(t) so that 

I 

T = I::: ,6.tk + otk 
k=l 

we obtain the following set of samples 

Of course, this set is periodic with period T. Denote by x(t) the function 
which has these samples. (This function in special case can be zero, too.) 
The function x(t) may be obtained from linear transformation of x(t). Thus 
we can write x(t) = x(t) * h(t) where h(t) denotes the weighting function of 
a linear filter. 

Property 4. If a signal x(t) is periodic with period T then the adapted 
samples of each subband have to be periodic with T, as well. 

In other 'words in each subband there must be zero crossings with positive 
slopes and with the same time interval T between them. 

Property 5. If the signal x( t) is periodic then all of its linearly transformed 
functions are periodic with the same period, 80 that 

x(t) = x(t + T). X(l)(t) = x(1l(t + T), ... ,x(i-l)(t) = x(i-l)(t + T). 

Thus the adapted samples of derivatives are periodic with period T, as well. 
If we have a TH hypothesis for period T then we can make a decision at an 
interval T + ,6.t. (We need not have a window with length 2T). 

Property 6. If the function x(t) has i > 2n zero crossing8 at interval [0, T) 
then we have more adapted 8amples than neces8ary hence the surplus can be 
left out of consideration. 
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Property 7. Let x(t) = xp(t) + Et where xp(t) is periodic and ~t is a Gaus·· 
sian process, moreover 

T/2 

M(~n ~ ~ J x;(t) dt. 
-T/2 

The signal x p ( t) is nearly linear at zero crossings. Consequently, the dis­
tance, e.g., between two zero crossings has Gaussian distribution. It can 
be proved that an estimated T from adapted samples is an unbiased and 
efficient estimate of T. 

Conclusion and Outlook 

The first two properties of adaptive sampling may seem contradictory, as 
every linear transformation possesses the first property, while every non­
linear transformation possesses the second property. We have shown, that 
the considered adaptive sampling has both. 

If we examine the instantaneous amplitude and the instantaneous fre­
quency of a signal then it is easy to show that they have similar properties 
(KlJPFl\WLLER (1949); CIZEK (1987»). Furthermore, the Wigner distribution 
(CLAASEN and MECKLEl'<"BR..ii.UKER (1984») is a member of a special class of bi­
linear, shift-invariant transformation and it has similar properties, too. The 
adaptive sampling makes it possible to modelize the human hearing. Our 
knowledge of the hearing (FLETCHER (1957); BEKESY (1960); FELDTKELLER and 
ZWICKER (1967») is in accordance with the properties of adaptive sampling. 

The psychophysical investigation of hearing (GRoBBEN (1971») proved 
that the uncertainty relation of the spectrogram (GABoR (1947») is not valid 
for short tones. (WOKUREK et al (1987») described that the Wigner distribu­
tion allows arbitrarily high resolutions.The properties of adaptive sampling 
suggest that the approach may be useful for detection of pitch frequency. 
Combining the AA1 DF (Average Magnitude Difference Function) method 
(see Ross et al (1974») with adaptive sampling may be, in this respect, of 
particular interest. Of course, if we have got the same time period in more 
subbands, a better decision is expected. 
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