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Abstract 

A method is presented which estimates the parameters of Linear Systems (LS), modelled 
by their transfer function, using a very efficient iteration algorithm. The estimator is 
an error in variables method and takes into account the noise on the input and output 
measurements. During the estimation process, an approximation of the Cramer- Rao lower 
bound on the covariance matrix of the estimates is derived and the 'mean' model error is 
discussed. 

Keywords: Parameter estimation, transfer function, mean model error, complex approxi­
mation. 

Introduction 

In a lot of engineering problems considerable effort is spent to find math­
ematical models for the studied systems. An important class of systems 
consists of the linear, concentrated parameter, time invariant systems Vi hich 
can be modelled by a transfer function. For these systems the modelling 
problem is reduced to the optimal determination of the order and·the value 
of the parameters in the transfer function. Identification theory offers a the­
oretical framework to solve this problem. In the literature, a broad class of 
estimators is described, for example the Bayes estimator, Maximum Likeli­
hood estimator, Markov estimator and the Least Squares (EYKHOFF, 1974; 
SORENSON, 1980), allowing to estimate the value of a set of parameters 
starting from disturbed measurements. In comparing the estimators, the 
Bayes estimator allows to include a priori information about the value of 
the unknown parameters by giving their a priori probability density func­
tion. However, this information is not available in most situations. The 
Least Squares uses no a priori information, but has the weakest properties. 

The estimation method, described here, belongs to the class of Max­
imum Likelihood Estimators (MLE). To use this estimator it is necessary 
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to know a priori the probability density function (PDF) of the noise on 
the measurements. In this article, a method will be described which es­
timates the parameters of a transfer function starting from the measured 
Fourier coefficients of the input and the output which can be both dis­
turbed by Gaussian noise. This is not a severe restriction because in a 
lot of applications the Fourier coefficients are obtained as the result of a 
Discrete Fourier Transform. In this situation frequency domain noise can 
be proven to be approximately Gaussian distributed, independently of the 
noise distribution in the time domain. 

An important choice one has to make before starting the estimation 
process, is the model that is used to describe the Device Under Test (DUT). 
The method presented here is intended to study continuous time systems. 
In the literature these systems are usually approximated by discrete time 
systems (e.g. ARMA models). This results in difference equations to de­
scribe the DUT which are more adapted to digital computers than differen­
t.ial equations. To get. useful results it is necessary to choose a sampling rate 
which is much higher t.han the highest. frequency occurring in the measured 
signal (SPRIET and VANSTEENEISTE, 1982), while, on the other hand, the 
sampling frequency must not be chosen too high so that stability problems 
are avoided during the estimation step. In many problems, the approxima­
tion of a continuous system with difference equations is acceptable, but to 
accurately describe t.he DUT, it is necessary to use a continuous model. 

Our met.hod is presented here as an estimator for continuous systems. 
However, the reader can notice that the technique is also applicable for 
discrete systems by a simple change of variables (jw ----.. e- jwT ). 

An important contribut.ion of this method is that it incorporates noise 
disturbances on the output AND the input signals. It is obvious that this 
is an evident choice for a lot of problems, however, in the section giving an 
overview of existing methods it will be pointed out that commonly used 
methods assume that the noise on the input measurements is zero. 

A Model of the Measurement System 

An a priori noise analysis of the measurement system is made to obtain the 
PDF of the noise on the measurements, which is necessary to construct an 
MLE. 
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A.) Study of the Measurement System in the Time Domain 

In this article, single input, single output (SISO) systems are studied. The 
measurements are made with a two-channel digitizer which is the heart of 
the measurement system, schematically represented in Figure 1. A multi­
sine, which is the sum of harmonically related sinusoids, is used as the input 
signal. The phases are selected in a way to obtain a signal with a minimal 
crest factor (the crest factor is the ratio of the peak value of the signal 
to its effective value) so that a maximal signal to noise ratio is obtained 
(SCHROEDER, 1979). These signals are very well suited to inject energy 
at the optimal frequencies only, resulting in a maximum accuracy (e.g. a 
bandpass, a lowpass, a highpass spectrum can be easily realized). The 
measured input and output signals are given by the data sequences xm(k) 
and Ym(k), k = 1, ... , N, respectively. These measurements are corrupted 
by noise, as shown in Figure 1. Between the measured and exact signals 
the following relations hold: 

Xm(k) = x(kT) + nI(k) = x(kT) + nx(k), 
Ym(k) = y(kT) + n2(k) + n3(k) = y(kT) + ny(k), 

(1) 

with T being the sample period, k the kth sample point and nx(k) and 
ny(k) being the errors on the input and output measurement, respectively. 

The noise on the measurements is modelled by 3 sources: 
nI, n2 : the measurement noise on the input and output, e.g. digitiz­

ing noise 
n3 : the noise created by the DUT and the environment. 

The following assumptions are made concerning the noise. 

E[nx(k)ny(l)) = 0 

E[nx(k)nx(l)] = Pnx(k - l) 

E[ny(k)ny(l)) = Pny(k - l) 

\:fk, I, 

\:fk, l, 

\:fk, l, 

(2) 

(3) 

(4) 

with E[ ... ) the mathematical expectation. This means that the input and 
output noise are not correlated. No assumptions are made concerning the 
mean value of the noise because only the DC component, which is not 
7used in the estimation procedure, is affected by it. 

In a lot of applications; the digitizing noise is the most important 
noise contribution. In this case, nx and ny can be approximately modelled 
as white noise sources, and (3) and (4) reduces to 

E[nx(k)nx(l)] = <T;Okl 

E[ny(k)ny(l)] = <T~Okl 
\:fk, I, 
\:fk, 1, 

(5) 
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input Xm ( Wk) 
II1II __ • FFT ___ IIiI~ Fourier coel!. 

output Ym (W k) 

Fig, 1, Schematic presentation of the measurement system 

with <J'x and tJy being the standard deviations of the noises in the time 
domain. In (KOLL:\R. 1986) the conditions on the sampling rate to get 
white digitizing noise are studied, 

E.) Modelling the Noise in the Frequency Domain 

The spectra of the measured sequences, Xm and Yrn, are calculated using the 
Discrete Fourier Transform (DFT). To avoid leakage effects, the generator 
is synchronized to the digitizer, otherwise the Interpolated Fast Fourier 
Transform can be used (RE:\DERS. SCHOUKENS and VILAIN, 1984). The 
results of the DFT will also be corrupted by noise, due to the time domain 
noise on the measurements Xm and Ym. For a given radian frequency Wk: 

the following results are derived. 

Xm{wd = CS[xmh + CS[n"h = X(wd +v,,(wd, 

Ym(wd = CS[Ymh + CS[ny]J.. = Y(wd +vy(wd, (6) 

with CS being the Fourier transform, Wk the kth component, X m , Y rn, X, Y, 
v", Vy complex vectors with both real and imaginary parts. 

To construct an MLE, the knowledge of the PDF of v" (Wk) and Vy(Wk) 

is necessary. SCHOUKENS and RENNEBOOG (1986) have shown that the 
PDF of the noise v", Vy is given by a Gaussian distribution which is com­
pletely characterized by the mean and the covariance matrix of the noise. 
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Let us define 

(7) 

with N the number of Fourier coefficients, "'xR and "'xl being the real and 
imaginary part of "'x, and z' being the transpose of z. The covariance 
matrix of the noise is given by 

:Ez = E[z z']. (8) 

From (SCHOUKENS and RENNEBOOG, 1986) it follows that :E z can be ap­
proximated by a diagonal matrix, even if the sampled noise sequences are 
highly correlated (the nondiagonal terms are negligible, compared to the 
diagonal terms). The diagonal terms are given by 

(9) 

O"Zuk is defined similarly. 
, T 2 d 2 he values 0" vxk an a-vyk can also be determined from a direct noise 

analysis. 
For white noise sequences the expressions reduce to 

and ( 10) 

Definitions 

To simplify the notations in the second part of this paper, it is necessary 
to systematically introduce many vectors. The following conventions are 
used (a . stands for an appropriate letter) 

.. m : measured value 

"E : estimated value 

.R. : real part 

X, "'x : input Fourier coeff . 

. I. : imaginary part 

Y, "'y : output Fourier coeff. 
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e.g. 
XI : the imaginary part of the exact Fourier coefficients of the input 

vector, 
XIm : the imaginary part of the measured Fourier coefficients of the 

input vector. 
Let us define also the following 'global' variables. 

Z' = (X'RX'IY'RY'I) (11) 

and define Ze and Zm in a similar way. 

Model of the Device Under Test 

To give a mathematical description of the Device Under Test (DUT), a 
model is chosen which gives the relation between the input signal and the 
output signal. We will use the Fourier coefficients as the basic measure­
ments. As a consequence, the model should be defined in the frequency 
domain. One should notice that this approach also allows to start the es­
timator from direct measurements of the transfer function instead of the 
Fourier coefficients. 

The complex model function F is defined for the exact Fourier coef­
ficients X and Y. 

Y = F(X,p) = FR(X,P) + jFI(X,P) (12) 

with FR the real part, FI the imaginary part of F, and with p the un­
known model parameters. 

For nonlinear systems it is very difficult to reduce the complexity of 
these expressions. However, for linear systems, (12) becomes simpler as 
the kth output Fourier coefficient depends only on the kth input Fourier 
coefficient. Both are related by a complex function: the transfer function 
which depends upon the frequency. 

(13) 

It has to be emphasized that the choice of the model order is extremely 
important. It should be chosen as simple as possible but must describe all 
the important contributions. 
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Formulation of the Maximum Likelihood Estimator 

A.) Determination of the Likelihood Function 

The first step in constructing an MLE is the determination of the likelihood 
function which is the conditional probability density function to realize a 
measurement X m, Y m given the parameters p, X, Y. It can be remarked 
here that the input and output Fourier coefficients are also regarded as 
unknown parameters. During the determination of the likelihood function, 
it is presumed that the parameters satisfy the model equations (12). 

Y = F(X,p). (15) 

The likelihood function gives the probability of realizing the measured data 
given a set of parameters. This probability is given by 

P(noise) = P(Xm-X, Y m - Y I X, Y, p). (16) 

The right hand side gives the conditional probability of realizing an exper­
iment with result X m, Y m, given the parameter values X, Y, p. From the 
previous noise analysis we know that the noise in the frequency domain 
is approximated by a normal distribution with zero mean and a diagonal 
matrix. 

The likelihood function becomes 

where 

(Zm - Z)':E;-l(Zm - Z) 
2 

M=4N. 

E.) The Maximum Likelihood Estimator 

(17) 

The MLE is given by the values of Z = Ze and p = Pe which maximize the 
likelihood function. Note that the covariance matrix :Ez is not a function 
of the parameters p and Z. 

In practice, the log likelihood function, defined as the logarithm of 
the likelihood function, is used to maximize the likelihood function. This 
expression is maximized by minimizing the cost function K defined as 

(18) 
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It can be remarked here that the MLE is reduced to a weighted least 
squares method. During this minimization, the model equations (15) have 
to be satisfied. This can be done using the Lagrange formulation or by 
substitution of Y by F(X,p), i.e. 

:E-1 
z (19) 

The complexity of this cost function can be reduced considerably for linear 
systems by eliminating the estimated Fourier coefficients in the problem. 
This ~esults in a higher convergence rate and reduces the required com­
puter power. To simplify the problem, the minimization of equation (19) 
is formulated using Lagrange multipliers and a new cost function, Kl, is 
defined as: 

n 

I: {LRk [D(p, wdYe(Wk) - N(p, Wk)Xe(Wk)]}real 
k=l 
n 

- I: {Lh[D(p, wdYe(Wk) - N(p, Wk)Xe(Wk)lhmag, (20) 
k=l 

with D (p, Wk) and N (p, Wk) the denominator and numerator of the transfer 
function as defined in (14) and LR;;and Lh the Lagrange multipliers. 

The minimum of Kl is found by solving the following set of nonlinear 
equations: 

OKl = 0 (a) 
oZe 

l
oK1 

=0 (b) oLR 
1 oK1 = 0 (c) 

OLl 
(21) 

Using the second and third set of equations, it is possible to eliminate Xe 
and Ye. Finally the cost function is reduced to 

This cost function depends only upon the model parameters Pe and the 
measured input and output Fourier coefficients. The minimization is again 
a nonlinear problem, due to the denominator of (22). The Gauss-Newton 
iteration procedure is chosen again, but in comparison to the problem for 
nonlinear systems, only the vector Pe is estimated which results in an im­
portant reduction in the number of unknown parameters. To find start 
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values, the cost function (22) is minimized in the first iteration step setting 
the denominator equal to one. So the minimization procedure is reduced to 
a linear least squares problem and the start values for pe are found as the 
solution of a set of linear equations. In the following iteration steps, also 
the denominator is considered to be a function of pe during the calculation 
of the Jacobian. 

Study of the Uncertainty on the Estimates 
(Calculation of the Cramer-Rao lower bound) 

After the estimation of the parameters, it is also necessary to have an idea 
of the uncertainty on the estimates which is described by the covariance 
matrix of the parameters. 

:Eo. = E[(Oe - O)(Oe - 0)' I el· (23) 

It was proven that there exists a lower bound on :Eo for a given set of 
measurements (Cramer-Rao lower bound, EYKHOFF, 1974): 

:Eo> J- 1 
with J = E [(!In!(Zm le)) (!In!CZm le)), lee], (24) 

where J is the Fisher information matrix. Using (20) and (21) it is found 
that 

(25) 

with 
(= Z - Ze. 

Substitution in (24) results in 

(26) 

which reduces to 

and E[(] = E[z z']. (27) 

In (24), J is changed to J e, to indicate that J e is calculated in terms of ee 
instead of O. However, if Oe is a good estimate of e, the inverse of J e can 
be used as an estimate of the Cramer-Rao lower bound. From experiments 
and simulations, it was found that the uncertainty on the estimates usually 
reaches the lower bound. From these results it can be concluded that an 
estimate of the uncertainty on the parameter estimations is found as an 
extra result of the estimation process. 
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Study of the Model Errors for Linear Systems 

In literature, a lot of attention is paid to structure selection, and more 
specifically to order estimation in linear single input single output (SISO) 
systems. Order selection for noisy systems is a complex problem because 
a proposed model is built on noisy observations and not on exact theoret­
ical knowledge. In this case the notion of desired model order is a more 
questionable one, due to the fact that the model is something that is con­
structed as an image of an unknown process. It need not cover all aspects 
of the process itself, so that the model may very well be of a lower complex­
ity. Therefore, a class of models of interest has to be specified, and within 
this class the most suitable member has to be found, according to a certain 
predefined criterion. A lot of methods are developed to make this choice 
in a proper way. During the selection process a choice has to be made 
between the goodness of the fit and the parsimony of the model. The AIC, 
BIC, FPE etc. are techniques which where described in literature in the 
previous decade. These methods minimize a cost function based on the loss 
function of the fit and the number of para.rneters used in the model. The 
selected structure has to minimize this cost function. In (SCHOUKENS et aI, 
1984) the influence of model errors on the loss function (mean, variance) 
are studied for linear SISO. The MLE is used to estimate the parameters 
of the system, modelled by a transfer function. Starting from the value of 
the cost function, an idea about the model errors will be given. Using this 
knowledge it can be decided if it makes sense to improve a model (e.g. the 
model errors become very small) and if two models can be distinguished, 
starting from the observations. There are also some guide-lines given to 
combine multiple experiments in an optimal way to get the maximal infor­
mation about the model structure. In this section only the results of this 
paper are reported. 

It is shown that there are two contributions to the expected value of 
the cost function 

E[K] = KmodeJ + Knoise (30) 

with 
np 

Knoise = N - 2 and np the number of unknown parameters 

and 

f"V 1 N It~ 1 X(wk)/2 
KmodeJ = - L 12 2 2' 

2 k=l 1 Tek CTvxk + CTvyk 

In this expression the following notations are used: 

Tek the exact value of the transfer function at frequency !b 
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tk the model error on the transfer function. 

In a lot of situations, the used input spectrum is fiat, and in this case, a 
'mean model error' can be defined as 

2 2KmodeJ {I T. 12 2 2} 
t mean = N 1 A 12 e (Ta + (Tb • (31) 

Using this result, it is possible to get an idea about the value of the model 
errors, starting from the knowledge of the value of the cost function. 

It was also shown that the optimal experiment strategy is choosing a 
minimal number of frequencies and averaging the experimental data before 
processing them. However, care should be taken by decreasing the num­
ber of frequencies because the number should be high enough to keep the 
asymptotic properties of the estimator. Also, the possibility of undetected 
modelling errors is increasing if the number of frequencies becomes too low. 

Examples 

The proposed method has been applied in many simulations and for nu­
merous measurements. The parameter estimates were unbiased, even for 
very high noise levels and the covariance matrix of the estimates coincides 
with the matrix given by (28). 

Example 1 : Estimation of the transfer function of a bandpass filter 

As a first example, the previous theoretical results are illustrated on a 
band pass filter. The transfer function is given in Figure 2. The mea­
surements were done using a 12-bit digitizer, the sampling frequency was 
50 kHz and the number of measurement points in the time domain was 
2048. A multisine, which is the sum of sinusoids with optimized phase to 
get a minimal peak factor, was used as input signal. The frequencies of 
the sinusoids were fk = k . 48.8 Hz, k = 5,6, ... 20 and the amplitudes were 
chosen equal to each other. The full scale was 2 Volts for both channels. 
From a preliminary noise analysis it turned out that the noise was white 
with a standard deviation of 1.24 . 10-5 V on the real/imaginary parts of 
the Fourier coefficients. 

The model used to describe the device under test is given by 

n =jw. 
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Fig. 2. Amplitude of the transfer function 

25 experiments were done and the measurements were processed using 4 
different models 

model 1: aD, al, a4, a5, a6 are set equal to zero, 

model 2: aD, al, a5, a6 are set equal to zero, 

model 3: aD, as are set equal to zero, 

model 4: all parameters are estimated. 

In Table 1, the results after processing 25 experiments are given. Because 
the measurements were done without locking the digitizer on the signal, 
it was not possible to average them before estimating. However, from 
the value of the cost function it is seen that the model error is dominant 
and from the section describing the device under test it results that both 
approaches have the same behaviour. 

model 
1 
2 
3 
4 

Table 1 
Study of the behaviour of the cost function 

cost function 
nOD 

500 
387 
335 

mean model error in the passband(dB) 
0.0370 
0.0095 
0.0083 
0.0078 

This experiment shows that care should be taken during a model selection 
procedure. From Table 1 it is seen that the model errors are dominant 
compared to the noise contribution, however, if the value of the cost func­
tion is transformed to a mean model error in the passband, it is seen that 
for model 2 the estimated error is about 0.02 dB, which is very small. From 
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this it can be concluded that the use of more complex models makes no 
more sense, because it is very difficult to make measurements where the 
systematic errors are not of the same order of magnitude. The estimated 
values of the transfer function for model 2 were also compared with direct 
measurements of the transfer function. It turned out that the differences in 
the passband were about 0.01 dB (Figure 3). The values of the parameters 
of the model 2 together with a statistical analysis (comparison of the un­
certainty with the Cramer-Rao lower limit) can be found in (SCHOUEE"'S, 
1985) and (PIl\TELON, 1988). 

The run time to solve these problems is in the order of a few seconds on 
a Macintosh IT computer (with 68020 processor and a 68881 coprocessor). 

Example 2 : Black box modelling of the transfer characteristics 
of a loudspeaker 

In a second example, it is shown that the method can also be used in black 
box modelling. The transfer function of a loudspeaker was measured, and 
a model was fitted to the data to describe the transfer characteristics of 
the loudspeaker (amplitude and phase). These results were used later on 
for digital correction of the loudspeaker (SCHOUKENS, 1985). For technical 
reasons the order of the correction filter was limited to 20. So the black 
box model was also selected to be a transfer function of 20 th order. As the 
results had to be used in a digital filter, a discrete model was selected and 
the estimation was done in the z-domain instead of the Laplace domain 
using an adapted estimation algorithm. 139 spectral lines were used, dis­
tributed as follows: 81 lines in (284.8 Hz, 10.05 kHz) and 58 lines in (10.21 
kHz, 19.49 kHz). In Figure 3 the result of the fit is shown. 

Example 3: Analysis of a mechanical structure 

In model analysis of mechanical systems, it is very important to know the 
resonance frequency and the damping of the different modes. This problem 
can also be formulated as the estimation of a transfer function on input 
(shaker) and output (acceleration sensor) 

data. We used the algorithm to analyse the data of a mechanical 
structure. The excitation signal was a multisine consisting of 309 compo­
nents with frequencies between 99.609 Hz to 400.39 Hz. The results are 
given in Figure 4. A transfer function of order 7 was used and after the esti­
mation procedure the poles were calculated to know the resonance frequen­
cies and the damping. The results for the two resonances of interest are: 
f=287.5Hz and damping=0.0030;f=321.8Hz and damping=0.0022. 

2 Periodica Polytcchnica Ser. El. Eng. 33/-1 
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Fig. 4. Measured and estimated transfer function of a vibrating mechanical system 

COMPARISON WITH EXISTING METHODS 

Since the end of the fifties, a lot of effort has been applied to the devel­
opment and study of the properties of identification methods for trans­
fer functions. This investigation is today just as important (RAKE, 1980, 
LJUI\G, 1985a, LJUNG, 1985b, THOMASETH et ai, 1985). A wide vari­
ety of estimators have resulted, on the one hand the methods of LEVI 
(1959), SANATHANAN and KOERNER (1963), STROBEL (1960), LAWRENCE 
(1979),VAN DEN Bos (1974), the correlation method (LJUI\G,1985b) and 
the empirical transfer function smoothing (LJUNG, 1985b) for the identifi­
cation of dynamic continuous time systems in the frequency domain; while 
on the other hand the least squares (LS), generalized least squares (GLS), 
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instrumental variable (IV) (WONG, 1967), maximum likelihood (LJUNG, 
1985a) and prediction error (LJUNG, 1985a) for the identification of dy­
namic discrete time systems. At present, most of the identification schemes 
available in the literature apply to difference equation models. The reason 
for this is that their representation is extremely well applicable for digital 
computers, and from a statistical point of view, noise handling in difference 
equations is less problematic than in differential equations. A disadvantage 
is that they only approximately describe continuous time models, which are 
the natural representation of almost all physical phenomena. 

The IV method, which is commonly used to estimate discrete time 
transfer functions (STOICA, 1983; LJCNG, 1985a; LJUNG, 1985b), requires 
the construction of so-called 'instrumental time series', which are causally 
related to the components of the observed input and output, but indepen­
dent of all the noncausally related components (noise) of these observations 
(VVONG, 1967). Although the quality (accuracy) of the estimator depends 
mostly on the choice of these instrumental time series (SODERSTROM and 
STOICA, 1981; STOICA and SODERSTRO~l, 1983), no practical method can 
be found in the literature to calculate them. This problem is partially 
overcome by the refined instrumental variable (RIV) method (YOUNG and 
JAKEMAN, 1979; JAKEMAN and YOUNG, 1979) which generates the instru­
mental variables via a rather involved iterative algorithm. 

The frequency domain methods of LEVI (1959), SAi'tATHANAN and 
KOERNER (1963) and LAWRENCE (1979) (who proposed a better conver­
gence alternative of SANATHAN's method) generate biased estimates (VAN 
DEN ENDEN et aI, 1977), but no theoretical justification, from a statistical 
point of view, can be found in their work. STROBEL published a method 
(STROBEL, 1966) which is consistent under the restrictive assumption that 
the noise on the measurements, expressed in dB, must be Gaussian. The 
empirical transfer function estimate (ETFE) is proven to be consistent and 
closely related to the frequency analysis using the correlation method and 
to the time-domain prediction error methods (LJu:t\G,1985b). 

Vife emphasize here that the methods described above (except VAi\ 
DEN Bos, 1974), employ only one disturbing noise source, called process 
noise or output noise (n2 and n3 in Fig. 1), in their model structure. How­
ever, there is no reason to neglect the input noise source in the model, 
since in electrical systems the input measurement noise is mostly of the 
same magnitude as the output measurement noise. 

VAN DEN Bos proved the consistency of his method, for the number of 
time domain samples increasing to infinity, with the following assumptions 
(see VAN DEN Bos, 1974, pp. 79-87) : 

2* 
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10 the number of parameters to be estimated is less than or equal to 
twice the number of harmonics in the input and output signals (regularity 
condition normal equation), 

20 the input and output signals are corrupted with stationary corre­
lated noise. In other words, the proof is based on the fact that the noise on 
the Fourier coefficients tends to zero (in mean square sense) as the number 
of time domain samples increases (VAN DEN Bos, 1974, pp. 87). That is 
the main difference in the theoretical sphere from the method presented 
here. 

From this brief review we conclude that there is no straightforward 
solution available in the literature to identify accurately the continuous 
time model shown in Figure 1, where the DUT is a dynamic, linear, time 
invariant system. This paper presents an original approach to fill some of 
these gaps and it is also the first time that a wide class of nonlinear systems 
can be practically identified. 

Conclusion 

In this paper an original method has been presented to estimate the pa­
rameters of linear and nonlinear systems. The method belongs to the class 
of MLE. Due to the general approach, the technique can be applied to 
a lot of problems using the same measurement setup. Due to the use of 
a time domain measurement which is transformed into the frequency do­
main, the necessary a priori information to build an MLE is easily derived 
without making difficult measurements and severe restrictions on the noise 
properties in the time domain. The covariance matrix of the parameters 
is obtained during the estimation process, It turned out that no extra 
calculations were needed to estimate the Cramer-Rao lower bound. From 
the experiments it was seen that this lower bound is reached which means 
that for the given measurements the estimates are those with the smallest 
uncertainty. 
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