
PERIODICA POLYTECHNlCA SER. EL. ENG. VOL. 33, NO. 4, PP. 195-204 (1989)

ARCHITECTURE OF A MODERN PROCESSING
OSCILLOSCOPE

H. FURST* AND H. FLECK**

*Institute of Electronic Measurement,
Technical University Vienna, Austria

**TRACE Elektronische Geriite GmbH, Vienna, Austria

Received June 15, 1988.

Abstract

For many applications the functions of a voltmeter, counter, power meter etc. can be
provided by a single measurement instrument, the digitizing processing oscilloscope. An
instrument featuring these capabilities has to be designed with respect to high speed data
transfers and simultaneous calculation of processed waveforms as well as scalar measure­
ment functions. This paper describes the architecture of a recently introduced modern
processing oscilloscope which is able to perform algebraic and analytical processing on
time domain signals as well as various amplitude or time measurements.

Keywords: digital oscilloscope, digitizer, data acquisition.

Introduction

Digitizing oscilloscopes combine analysis functions with excellent measure­
ment fidelity to characterize single shot or repetitive signals, either sim­
ple waveshapes or complex modulated signals. These instruments contain
a fast acquisition memory, where digitized amplitude data are stored in
a consecutive manner by overwriting old data by those recently received
from an analog to digital converter. Recording may be stopped by a trigger
signal derived from the recorded waveform either instantaneously or after
a certain delay time. Digitized data representing the time domain signal
are available for processing algorithms.

The complexity of those processing algorithms is only limited by the
performance of the oscilloscope calculation system. A variety of digital sig­
nal processors, numeric processors or microprocessors offer the possibility
to tailor systems for a large field of application areas.

In principle there are two possible methods for signal processing:

a) Real Time Processing
Data are processed as they are digitized. The processing system has

to meet the speed requirements of the digitizing rate. The signal may be

3*

196

recorded continuously.
Examples: Filters, FFT-s etc.

H. FURST and H. FLEe;.;

b) Quasi Real Time Processing
One set of data is recorded and stored. A user definable processing

algorithm is performed on that data after the recording stops. The process­
ing speed is not related to the digitizing rate. The signal is not recorded
continuously. The dead time of the system depends primarily upon the
processing speed. If a repetitive recording sequence is selected, an unlimi­
ted number of recording and processing cycles may be performed without
further user action.
Examples: Waveform arithmetics, scalar functions etc.

As the quasi real time method is independent from the digitizing
rate, it is the only one that meets complex processing requirements at a
reasonable price.

Architecture

A processing oscilloscope typically consists of the following building blocks
(Fig. 1.).

User

Fig. 1. Structure of a processing oscilloscope

The data flow starts at the acquisition section where the signal is
digitized and the data are stored in a fast input memory.

After this memory is filled up, the data set called a 'trace' is trans­
ferred to the processing section, where it may be used together with other
new recorded or stored traces for calculation of new traces or for calculation
of scalar functions as frequency, rms etc.

Additionally, traces may be saved in the storage section for later use.
The last section provides a display of measured and calculated traces

and scalars to the user.
The following description will focus primarily on the processing sec­

tion and give only absolutely necessary descriptions for the other sections.

ARCHITECTURE OF A .\IODERN PROCESSING OSCILLOSCOPE 197

Acquisition Section

This section transforms the analog signal into a set of numeric values as they
are needed by the following sections. One sampled amplitude is represented
by an integer value and a scaling value that considers attenuation and gain
of the analog circuits (Fig. 2.).

Trigger
and

sequence
control

Fig. 2. Acquisition section

The signal to be measured is connected to the attenuator and amplifier
section of one of various channels for conditioning the amplitude to the AID
converter window. A number of attenuation steps provides a sufficient
signal amplitude to the converter.

For accuracy and special sampling techniques, a sample and hold
circuit may be necessary to freeze the signal during conversion time. The
conversion rate and the number of bits of the digital result are the main
specifications for this section.

The conversion result is stored in a fast input memory, built out of
rams fast enough to meet conversion speed requirements or in case of high
conversion rates built by means of bank switching circuits.

The trigger and sequencer section selects trigger sources and condi­
tions. It performs recording sequences as roll mode, single shot, repetitive
sampling or equivalent sampling. After a trace is completed, the data are
made available to the following sections.

198 H. FURST and H. FLECK

Processing Section

The main memory holds traces during processing time. Trace data is re­
ceived from channels and storage devices. The results that are to be dis­
played to the user are sent to the display device. A numeric processing
unit is optional to increase performance (Fig. 3.).

Storage exit
~ Display exit

Fig. 3. Processing section

The processing section is dedicated to perform the following actions:
- accept incoming data from devices (channel, interfaces, cursors, disk,

user);
- synchronize supply of calculation programs with data;
- support both trace graph and scalar calculation functions;
- conversion of data to graphic (traces) and numeric (real scalar list)

files;
- provide user definable trace and scalar expressions;
- high speed transfer of calculated trace and scalar data to storage de-

Vlces;
- synchronize high speed transfer of calculated trace and scalar data to

display devices;
- synchronize recalculation of data if parameters change;
- support standard buffered recording and roll mode;
- support various recording sequences e.g. 'babysitting';

support fast data dumps for "I don't know what I'm looking for"
applications.

In fact, the processing system performs synchronized read from a number
of files, combination of data and synchronized write to destination files in
a specified sequence.

Trace And Scalar Definitions

Trace processing should be definable by the user to meet his individual
measurement requirements. By means of trace definitions supplied by the

ARCHITECTURE OF A MODERN PROCESSING OSCILLOSCOPE 199

user, the processing system dynamically creates a control block structure
that enables the trace processing task to perform the requested operations.

For each trace and scalar that has to be calculated by the processing
system a definition is necessary that covers the rules where the data have
to be taken from, what processing has to be performed on the data and
where the data have to be sent to.

Traces and scalars are handled with the same programs. In fact, scalar
measurements like rms, frequency, cursor measurements are traces with a
length of l.

The origin expression defines where the data have to be taken from
and what calculations are to be performed on the data. Using a mnemonic
syntax for description only, we can write for example:

cl . c2 defines the origin for a trace that is calculated as the product of
channel 1 and channel 2;

cl + e : t3 defines the origin for a trace that is calculated as the summation
of channel 1 and trace 3 stored on e-disc;

rms(cl) defines the origin for a scalar that is equal to the rms value of the
signal at channel l.

Definition of a destination device enables the user to specify not only
the display but storage devices, too, in order to perform fast signal dumps
e.g. to a disk or an interface. The destination device definition is part of
the trace name, for example:

d: t1

e : t2

d: sI

specifies a certain trace on the display;

specifies a certain trace on an e-disc;

specifies a certain scalar on the display.

By assigning the origin expression to the destination expression, the
fundamental trace definition is completed:

d: tl = cl . c2

e : t2 = cl + e : t3

d: sI = rms(cl)

Trace Node Structure

A set of trace and scalar definitions is transformed to a control block struc­
ture that enables the trace processing task to perform the requested oper­
ations.

200 H. FURST and H. FLI:;CK

The control block structure is built from trace nodes. There is one
node for each trace or scalar definition.

The following definitions create a trace node structure that will be
used in the following explanations:

d : tl := cl + c2

d : t2 := cl + tl
d: sI := freq(t2)

d: s2 := rms(c2)

e : el := cl - c2

e: e2 := tl

a trace to be displayed,

a trace to be displayed,

a scalar to be displayed,

a scalar to be displayed,

a trace to be stored,

a trace to be stored.

The trace node structure shows the access paths from nodes to their
operands (Fig. 4.).

User interface

Display data exit node
scalar and trace drawing

Fig. 4. Trace node structure

File system
data exit node

ARCHITECTURE OF A MODERN PROCESSING OSCILLOSCOPE 201

Each definition statement creates a symbol, a node and a node task.
These tasks perform the following, in the system:

-execute calculation cycles;
-call calculation or input procedures;
-support calculation procedures with references to operand and re-

sult data buffers;
-communicate with other trace node tasks to synchronize execution.
-Trace nodes have one of several types:

a) Data Entry Nodes
get data from external devices instead of calling calculation proce­

dures like calculation nodes. This tasks call driver routines that get data
via e.g. channelbios calls or, in case of cursor and reference, via call of
cursor bios.
Examples:

c1(= channell), c2(= channe12),

C' (= cursor), R(= reference).

b) Calculation Nodes
call calculation proced ures that process data from operand nodes to

result buffer. They have nearly the same data and task structure like data
entry nodes.
Examples:

tl(= trace 1), t2(= trace 2).

c) Data Exit Nodes
. have all the nodes as the operands that are attached to their device.

VVe define two tasks, one for display and one for destinations accessible via
file system calls to handle the Gata transfer.
Examples:

d(= display), edisc).

Synchronization Requirements

Each time data from input comes in or cursor lines are moved, or parame­
ters like zoom or position are changed, the user wants to have data on the
screen updated. However, if inputs are triggered by the same trigger condi­
tion one only wants to get screen update as soon as all record synchronized

202 H. FURST and H. FLEe;.;

channels are ready. To obtain these features it is necessary to define three
synchronization levels:

a) Recording Synchronization
All recording units with the same trigger condition must use a single

'ne,',- recorded data' signal. Channel bios has to manage this synchroniza­
tion level.

b) Calculation Synchronization
A new calculation cycle starts like a calculation wave at the data

entry trace nodes like channels and cursors, runs through the whole trace
node structure and is completed at the data exit trace nodes like display
or e-disc.

To achieve a simple synchronization mechanism, calculation waves
start at all entry nodes whether they have new data or not. In order not to
waste calculation time, trace nodes run synchronization only cycles if none
of their operands has new data.

Calculation cycle starts if new data at channels is available, cursors
are moved or calculation, storage or display parameters are changed.

c) Display Synchronization
Transformation of traces and scalars to graphs and readouts is syn­

chronized by a display task to guarantee related trace and scalar data on
screen.

Calculation Cycle Description

Completion of a channel recording or movement of a cursor shall start a
ne,v calculation cycle as soon as the predecessor cycle is finished. When a
new cycle starts, one, some or all data entry nodes may have new data. A
new data message is issued.

Data entry nodes check whether successor calculation node tasks used
previous data of data entry node. If so, new data may be filled into data
buffer of data entry node.

To achieve a one-pass synchronization structure, all data entry nodes
participate at a new cycle, whether they have new data or not. If there is
no new data for an individual data entry node, it runs a synchronization­
only cycle. Otherwise they call a channel or cursor driver that manages
input of new data of their related device.

Data entry nodes inform successor tasks that new data are available.
The calculation tasks now start their own cycle.

A calculation node may start a cycle as soon as all attached operand
nodes issued a new data message and all attached clients signalled the use of

ARCHITECTURE OF A MODERN PROCESSING OSCILLOSCOPE 203

the former result. The calculation nodes then call calculation procedures
that read the operand data and write the result of the new node. The
next step is to send a new data message to all successor or client nodes,
respectively. The loop is closed as the calculation node waits for a new
data message from its operands.

r{ Initialize
State variables: operands: used, result: new OcR, J

I
Calculated, waiting for new operand data

°oRo J State variables: operands: used, result: used

All operands Signalled new data

I
Calculating

O,Ro J State variables: operand: new, result: used

Signal new data to all clients

r Calculated, message to clients to use result
State variables: operands: new, result = new O,R, 1

Signal data used to all operands

J I
Calculated, waiting for clients to use result CoR, State variables: operands: used, result: new

All clients signalled data used

Fig. 5. Trace node task states

In fact, data entry node tasks and calculation node tasks are identi­
cal. The only difference is the kind of procedure they are calling for data
processing.

Data exit nodes may handle operand data in a synchronous or in an
asynchronous way. E-disc devices may copy operand result data as soon as

204 H. FURST and H. FLECK

it is available, display devices may wait until all operand tasks are ready
and then display traces and scalars all together.

Trace node tasks may be in one of four states. The actual state is
reflected by two state variables: 0, R representing the state of operand and
result data, respectively. A loop through all states results in a gray-coded
state variable pattern (Fig. 5.).

Interta.sk Communication

Task synchronization and communication are performed by means of real
time operating system utilities. The task oriented structure is supported
by modern microprocessors and guarantees high performance and software
reliabili ty.

Display Section

Display section is the interface for the user where he expects to examine
the results almost immediately and in high quality.

Screen update rate and screen resolution are the main specifications
in this section.

The traces may be manipulated by means of zoom and interpolation
functions.

Addresses:

Dipl.-lng. Dr. Hans F-cRST

lnstitut fur Elektronische Messtechnik
Technische U nivcrsitat ,\Vien
Gusshausstr. 25, A-I040 Wien, Austria

Dipl.-lng. Herbert FLECl\

TRACE Elektronische Gerate GmbH
Tannhauserpl. 2, A-I050 Wien, Austria

