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Abstract 

The adjustment of controllers to unknown processes is a time consuming and sometimes 
difficult task in industry. One possible solution for this problem is the usage of an adaptive 
controller which automatically determines its optimal parameters. This paper presents a 
new method to calculate the parameters of a PI(D)-controller from the measurement data 
of an unknown process for the single-inputfsingle-output case. 
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Introduction 

A common task in process control is to adjust a PI(D)-controller to the 
unknown process. The tremendous progress in microprocessor technology 
allows the use of methods with high computational load in small applica­
tions. In recent years there appeared a large number of controllers with the 
ability of adapting themselves to the dynamics of the system under control 
(ASTROYI, 1983; ISERMANN, 1987). This paper deals with a new algorithm 
to determine PI(D)-controller parameters for a linear process with real or 
slightly complex poles. 

Basic concept of the controller design 

The control loop for a single-input/single-output system can be seen in 
Fig. 1. 

The dynamic behaviour of this system is determined by the closed­
loop transfer fUIlction Fe (s ): 

F. (s) = R(s)G(s) 
c. 1 + R(s)G(s) 

F(s) 
1 + F(s) 

Z(s) 
N(s) 

(1) 

If Fc(s) can be approximated by a dominant conjugate complex pole pair, 
s = -8 ± jw, we get the step-response of the closed-loop system as 
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I 
Fig. 1. Singk-input/single-olltpllt control system 

hc(t) = 1 - e-ot(coswt + ~sinwt) 
w 

x 

The maximum overshoot of hc(t) is obtained for trnax = 5 as 

A L ( ) _ ( \ _ -r.o/,-· 
wiLc t max - hc t max ) - 1 - e , 

and the ratio of two consecutive extremal values of .6.hc(t) is 

.6.hc((k + l)tmax ) = e-r.o/...: 
.6. hc (kt lllax ) 

~ 

(2) 

(3) 

(4) 

Both values in Eqs. (3) and (4) depend only on the proportion of the real 
part 5 to the imaginary part w of the poles s. Let us define these properties 
as a 'Damping ratio' D = l'tl, which describes the behaviour of the resulting 
time function of a conjugate complex pole pair. 

Our goal is to determine the controller in a way, that the following 
four conditions are fulfilled: 

I.-the closed loop is stable, i.e. all poles 5 = -5 + jw have a negative 
real part -5 < 0; 

Il.-one pole pair 50 = -tSu±j",'o = -tSo+jDtSo has exactly the desired 
damping ratio D = I I and ItSol as large as possible; 

HL-all other poles 5 = -6 + jw have a damping ratio not larger 
than D = Ill::; D = I~:: i; 

IV.-all other poles 5 = -5 + jw lie to the left of the pole pair 
50 = -50 + jwo : -5 ::; -50 < o. 

Condition I. is obvious, conditions n. to IV. lead to a dominant conju­
gate complex pole pair 50 = -50 ±jD50 with 1501 being as large as possible 
without violating conditions Ill. and especially IV. Condition IV. guaran­
tees that there are no poles in the system that produce a time behaviour 
decaying slower than e -Col. 

The next sections will explain, how these conditions can be satisfied 
with the help of the modified Nyquist stability criterion. 
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The N yquist Stability Criterion 

The Nyquist stability criterion (NYQUIST, 1932; FOLLINGER, 1985) leads 
to a decision about the stability of the closed-loop system only through 
knowledge of the open-loop transfer function F(s) = R(s)G(s). 

This is achieved with the help of Cauchy's resid'ue theorem. It states, 
that the contour integral around a closed curve C of a complex function 
N'( ) 
N(:) is equal to the number of zeros, z, minus the number of poles, p, 

within C multiplied by 21£j: 

with 

J N/(s)d f ). 

N (s) s = ~ z - P 21£) 
C 

.".-1-) dN(s) 
1'/ (s = --­

ds 

The following equation also holds: 

$0 ] ~((:? ds = [lnN(s)J~~ = [lnIN(s)1 + j arg(N(s))l~~ 
SI 

with 

N(s) = IIV(s)leJarg(.\"(,)}. 

(5) 

For SI = S2 we get InjN(sdl = lnIN(s2)j, but the phases are not necessar­
ily the same: arg(N(sJ)) = arg(N(s2)) not necessarily holds. Therefore 
the contour integrol equals the phase difference that we receive for one 
circulation OIl C: 

j N~ (s) ds = )' D.arbO'( N(' s)) 
2\I(s) c \ , .' (6) 

C 

Comparison of Eqs. (5) and (6) yields: 

~arg(N(s)) = ~arg(l + F(s)) = (z - p)2Tt. (7) 

For the Nyquist stability criterion the curve C consists of the imaginary axis 
and a semicircle with radius r around the right s-half-plane (see Fig. 2.). 

For real physical systems F(s) = 0 and D.arg(l + F(s)) = 0 on the 
semicircle of C for r -+ co. Hence, to evaluate the contour integral, we 
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Fig. 2. I\yquist stability criterion: Integration curve C 

have to calculate ,6.arg(l + F( s)) only on the imaginary axis, that is for 
- <Xl :s: w :s: <Xl. 

Using the symmetry of N(jw) it is sufficient to obtain ,6.arg(l+F(jw)) 
for 0 :s: w :s: <Xl and for a stable open-loop and a stable closed-loop system 
(p = z = 0) Eq. (7) becomes: 

cc I 

,6. arg(l + F(jw)) == 0 
w::::O 

(8) 

or 

(9) 

if we have an I-type controller with a pole s = O. For the determination of 
-cc 
,6. arg(l + F(jw)) it is convenient to move the curve 1 + F(jw) by one unit 

w=O 
to the left. This also changes the origin from where we count arg(l + F(jw)) 
to point (-l,jO). Now we can directly compute F(jw) = R(jw)G(jw) and 

cc 
the phase difference ,6. arg(F(jw)) observed from point (-l,jO). 

w::::O 
To apply the criterion, we have to plot the Nyquist curve F(jw) for 

o :s: w :s: <Xl (see Fig. 3.) and check if it encloses point (-l,jO), which 
means: does it intersect the negative real axis to the left or to the right of 
point (-l,jO)? 



AN ADAPTIFE PID·CONTROLLEH 267 

In the latter case, the closed loop is stable and has no poles in the 
right s-half-plane. If the Nyquist curve runs exactly through point (-1, jO), 
the closed loop has a complex conjugate pole pair on the curve C which is 
the imaginary axis s = jw. 

--~~~--~~~~----------~ 
Re F(jw) 

Fig. 3. Nyquist curve F(jw). 0= arg(l + F(jw)) 

So the critical point F(jwc) of the Nyquist curve is the intersection 
with the negative real axis. For this point the following equality must hold: 

and thus the absolute value 

{

<I 

IR(jwc)G(jwc)1 = 1 

> 1 

determines, if the closed-loop is stable or not. 

(10) 

(11) 

These two formulas (10), (11) for the critical point will be used to 
obtain the controller parameters with the help of the extended Nyquist 
criterion described in the next paragraph. 
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The Extended Nyquist Criterion 

The idea of calculating a contour integral around a closed curve to detect 
poles of a complex function is of course not limited to the right s-half­
plane. For the controller design according to the conditions in the previous 
chapters we use an extended integration curve C' which includes the right 
s-half-plane to obtain a stable system and additionally those regions in the 
left s-half-plane, where Iwl ;::: ID81 (see Fig. 4·). 

A 
Vl 

Re,s 

Fig. 4- Extended :\"yquist criterion: Integr2.tion curves C' .C" 

VVe can now perform the calculations corresponding to the conventional 
N yquist criterion and get similar results. Function F( s) has to be calculated 
for s = -0 + j Do with 0 :S {; :S 00, function F( s) ~ 0 for radius 7' ~ 00 

has no contribution to the phase shift. If there should be no closed loop 
poles in the shaded area of Fig. 4. the phase difference has to be: 

:xo , 
6. arg(l + F( -8 + jD8)) == 0 

0=0 
(12) 

or 

00 ! 

6. arg(l + F( -0 + jD8)) == - tan D + 1T 
0=0 

(13) 

if we have an I-type controller with a pole s = O. 
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We must plot the Nyquist curve F(s = -5+jD5) again for 0 ~ 5 ~ cc 
and check, if it encloses point (-1, jO). If the curve intersects the negative 
real axis to the right of (-l,jO). then the closed-loop has no poles in the 
shaded area of Fig. 4., if it intersects to the left, the closed-loop has poles in 
the forbidden area. If the curve crosses the real axis exactly at ( -1, jO), the 
closed-loop has a complex conjugate pole pair So on the lines s = -5±jD5, 
and this is what we intended to obtain from condition n. and Ill. The point 
of interest is again at (-l,jO), and we can make use of Eqs. (10) and (11) 
to apply the extended Nyquist criterion. 

To fulfil condition IV. it is necessary to check, if there are no other 
poles in the triangle between So = -50 ± j D50 and the origin s = O. This 
can again be done with a modified integration curve e" for the Nyquist­
criterion which theoretically consists ofline s = -50 + jw for -(x;. ~ w ~ 00 

and a semicircle around the right s-half-plane (see Fig. 4.). However, since 
we can be certain that there are no poles in the shaded area of Fig. 4., this 
Nyquist curve F(s = -50 + jw) has to be calculated only for 0 ~ w ~ D50. 
If it doesn't enclose the point (-I,jO), condition IV. is satisfied and there 
are no poles nearer to the imaginary axis as the pole-pair So = -50±jD50. 

Determination of the optimal controller parameters 

This section describes the necessary steps to calculate the optimal con­
troller parameters according to the earlier stated conditions. The process 
is assumed to b", identified, so the Laplace-Transform G(s) is available (see 
next chapter). 

In order to reduce th", number of the PID-controller parameters, we 
choose T" = 4Tv, which results in a double zero at s = -l/Tn: 

( ' K( 1 ) (1+Tn s )2 
R s) = n 1 + -T-. - + Tv s = P 

~s s 
( 14) 

with 

At first, we have to apply the extended Nyquist criterion with integration 
curve C' to the function R( s) G( s) and find point So = -50 + j D50 for which 
Eq. (10) holds. Inserting (14) in (10) ,'le get: 

arg(R(s)G(s)) = arg(R(s)) + arg(G(s)) = 
= arg(P) - arg(s) + 2arg(1 + TRs) + arg(G(s)) = 
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TR D5 I 

=0-tanD+2arctan T 5+ arg(G(s))==-1L (15) 
1- R 

The controller gain P makes no contribution to arg(R(s)G(s)), so the so­
lution of Eq. (15) is independent of P and the only parameter is the con­
troller time-constant TR. System G( s) essentially consists of poles in the 
left s-half-plane, so arg( G( s)) is negative. The solution of Eq. (15) with the 
smallest 50 =I- 0 is therefore obtained for TR = O. If we then increase TR 
and solve Eq. (15) we will have a new solution for 5 which is larger than 
the 50 obtained for TR = O. To fulfil condition n. (50 as large as possible), 
we have to repeat this procedure - by increasing TR and calculating 50 
until the new 50 is not larger than the previous one. To get a closed-loop 
pole pair at So = -50 ±j D50 we then have to determine the controller gain 

I 

P in a way, that IG(so)R(so)1 == 1 (compare with Eq. (ll)). In fact, the 
gain P must be calculated for each value of TR, because it is needed to 
check condition IV. with the N yquist criterion and integration curve e". 
If we detect a pole in e" then TR has to be reduced to the last value which 
satisfied condition IV. 

The steps just described lead to a recursive procedure for determining 
the controller parameters P and TR: 

The initial values for 50 and P are found with TR = 0; 
repeat 
increase TR and solve Eq. (15) to find new 50; 
determine P such, that so = -50 ± jD50 is a closed-loop pole pair 
until 

a) the new 50 is not larger than the previous one; 
or 

b) there is a pole within the integration curve e"; 
the last parameters TR and P that did not violate a) or b) and are 
the optimal parameters according to conditions 1. to IV. 

System identification 

If a controller is to be adapted to an unknown process, it is necessary to 
determine somehow the dynamic behaviour of this process. Most of the 
available controllers are based on linear mathematical system-models such 
as the transfer function G(s), derived from the differential-equation of the 
process: 
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11 • 

:z::: bjsJ 

G(S) = :...,j~::-O __ 

:z::: ajsi 
;=0 
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(16) 

The parameters ai and bj are estimated from measurement data, for exam­
ple with the recursive least-squares method. A problem of these parametric 
models is to determine n, because the result of the parameter estimator very 
much depends on this value. In general, n does not have a distinct value, 
but has to be calculated approximately from the measurement data. A 
similar problem arises, if the process contains a dead-time. To avoid these 
difficulties, we use a non parametric model of the process: its impulse re­
sponse g(t). We do not have to cope with order n or coefficients ai, bj, they 
are implicitly included in the samples of g(t). 

There are basically two ways to calculate g(t) from the measured 
signals u(t) and x(t). 

Deconvolution in the frequency-domain 

From Eq. (16) we get 

( ) = r- 1 F{x(t)} 
9 t .r F{u(t)} (17) 

This method can be implemented using the Fast-Fourier-Transform, so the 
number of calculations is relatively low. However, a disadvantage is, that 
F{u(t)} must not be zero for all frequencies. Since u(t) is the measured 
output of the controller R, this cannot be guaranteed, in general. 

A possible way around this problem is to calculate g(t) in the time­
domain. 

Deconvolution in the time-domain (NAHI, 1969) 

The equation corresponding to (16) in the time-domain is the convolution 
integral: 

,X) 

x(t) = J g(T)U(t - T)dT, (18) 
-.X) 

or for discrete signals: 
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co :\'-1 

x(k) = I: g(l)n(k - I) = I.: g(l)u(J;: - I) (19) 
i=-.x 1=0 

with g(l) = 0 for I < 0 and l ~ N. 
Introducing error e(k) we get 

/"-1 

x(k) = I: g(l)n(k -l) + e(k), 
1=0 

or in matrix notation: 

x = Ug + e (20) 

If we take AI > N samples of nU:) and x( k) we can formulate a least-squares 

estimator to minimize eT e and obtain an estimate g for g: 

g = (UTU) -IUT x 

It makes no difference for the estimation of g if the signals u(t) 
are measured in the open-loop or in the closed-loop system. 

From Eq. (21) we finally calculat.e the Laplace transform 

\" 

C() T ~ A( . - ,leT 
,5 = L.,g),,)e' 

1:=1 

(21) 

and x(t) 

(22) 

which is needed to determine the controller parameters as described in the 
previous section. 
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