
HIGH LEVEL PLC LANGUAGE 
AND DEVELOPMENT SYSTEM 

A. SZEGI 

Department of Measurement and Instrument Engineering, 
Technical University, H-1521 Budapest 

Received March 5, 1987 

Abstract 

The "PlY" high level PLC language developed in the Department of Measurement 
Engineering, Technical University of Budapest, ensures bit, byte and word processing, the 
possibility of symbolic I/O and internal variable names, single line expressions, IF-THEN
ELSEIF-ELSE conditional structures and state transition graph structures. The development 
system makes the line-by-line correction possible and ensures a PlY language level debugger 
with built in LSS (logic state store). 

Introduction 

The MMT micropocessor application system has been developed at our 
Department cooperating with MEDICOR Works. Originally it was proposed 
for building laboratory-measurement equipment. Several Hungarian firms 
have bought the license of the system and most of them are interested in 
industrial applications, too. Therefore the idea of applying the MMT system in 
industrial environment arose. To accomplish this; additional HW and SW 
elements are necessary. 

In this paper a high level language and development system for industrial 
application is dealt with. The language is dedicated for medium-high 
complexity systems with mostly two state I/O signals, but restricted complexity 
analog I/O handling is also possible. The main characteristics of the language, 
the requirements of an interactive program development system and the 
debugging possibilities built into the system are described in the paper. 

PLC programming 

To solve not very high speed industrial control problems, PLC-s 
(Programmable Logic Controllers) are widely used. Their operation may be 
sequential, when a step-by-step program is executed depending on input 



44 A. SZEGI 

conditions, or cyclic, when the program is executed cyclically, or the 
combination of the above modes. For programming PLC-s different 
specialized languages have been developed: 

(1) circuit diagram equivalent description. Its typical and most widely used 
form is the 'ladder diagram' when a relay network or its equivalent solving 
the problem has to be given [1]. This program can be realized by cyclic 
operation. 

- (2) step control description [2, 3]. It gives the conditions of state transitions. 
Usually it is used together with (1) which describes the operation in a given 
state. 

- (3) "IF condition THEN operation" type description [4]. Both cyclic and 
sequential operations are solved in the given example. 

- (4) high level languages. Either a high level PLC language based on a high 
level language is defined (e.g. CONDOR based on ALGOL [5]) or a high 
level language cooperates with a PLC language (e.g. BASIC and ladder 
diagram in [6]). 

Most of the PLC languages are of low level: symbolic names, single line 
expressions, labels are not allowed. It can be explained by three reasons: the 
development device must not be expensive, the programs are relatively simple 
and it can be useful if the source can be regenerated from the running code. In 
our opinion, the technological breakthrough in electronics makes it possible to 
reevaluate the above points of view and a high level PLC development system 
(language + development device) can be of vital importance. 

The high level PLC language 

The system operates basically in cycles. The cyclic operation means the 
repetition of the input sample-internal data processing-output set sequence 
(see Fig. 1). The adequate program structure is shown in Fig. 2. 

RESET 

INITIALIZE 

INTERNAL DATA PROCESSING 

Fig. 1. PLC cyclic operation 



HIGH LEVEL PLC LANGuAGE 

PROGRAM 

INIT 

CYCLE 

END 

data, procedure, graph 
declarations 

initialization program 

cyclic program 

Fig. 2. PLC program structure 

Data types 

45 

A data unit can be a bit (of a byte), a byte or a word. From the point of 
view of usage it can be INPUT, OUTPUT, (internal)DATA, TIMER. An 
example for the declaration of different data types and some of their bits are 
shown in Fig. 3. E.g. the INPUT declaration gives the symbolic name "door" 
to the input byte of address 12, the symbolic name "closed" to its bit 7 etc. 

INPUT 
OUTPUT 
DATA 
TIMER 

12, door (7: closed, 6: opened, 5: toclose, 4: toopen) 
7. dooroperation (7: close, 6: open) 
error (7: closeerror, 6: openerror) 
doortime, lOOms 

Fig. 3. Data declarations 

Complex bit expressions 

In conditional statements or in bit assignments a bit expression formed of 
input, output and internal bitnames, timer names and bitfunction names 
using * (AND), + (OR) and \ (negation) operators and brackets of any 
complexity can be given. E.g. see Figure 4. 

IF close*\closed*\doortime THEN 
closeerror = TRUE 

ENDIF 

Fig. 4. Conditional statement 



46 A. SZEGI 

State transition graph 

A door operation state transition graph (Fig. 5) and a part of its program 
representation (Fig. 6) is given as an example. 

The possible graph handling operations: 

NEXT state state set within the graph 
graphname = statename graph state set outside the graph 
(graphname = statename) graph state test in a bit expression 
graphname activates the graph 

(The activated graph takes one step which means that the program in the actual 
state is executed until it arrives to a NEXT or an ENDST ATE statement. In 
the program several graphs and out-of-graph program parts can cooperate or 
run independently in parallel.) 

closed" resttime 

closing 

closed 

Fig. 5. Door movement control graph 



HIGH LEVEL PLC LANGUAGE 

GRAPH 
BEGIN 
STATE 

doonnove 

c10sedstate 
IF toopen 

doortime = timeout 
NEXT opening 

ELSEIF \c1osed*\doortime 

ENDIF 
ENDSTATE 

STATE 

11: 

opening 
IF 

ELSEIF 

ENDIF 
END STATE 

END 

GOTO startclose 

opened 
GOTO 
\doortime 

II 

SET open error 

CLEAR 
NEXT 

open 
openedstate 

Fig. 6. Door movement control graph program detail 

Development system 

Its main requirements are: 

- interactive high speed correction 
- in site correction -+ portability 
- real time debugging 

47 

A PLC development device of higher performance is usually a portable CRT 
terminal like equipment with built in floppy disk, Eprom programmer and 
eventually u.v. eraser. 

The best known method for high speed program correction is the 
application of interpretation. It is either very slow or requires some 
preprocessing (e.g. expression transformation into a sequence of operations, 
label evaluation). We worked out a method for running compiled machine 
code which allows the correction of single lines without redundancy in the 
correction free program. The principle of the method is the following: 

When the compiler translates the program the beginning address of the 
binary code of each line is stored in an address table. When a source line has to 



48 A. SZEGi 

be corrected it can be done by a specialized editor which knows its serial 
number. Then the binary correction is realized by patching the new binary code 
to the end of the program. The basic scheme is shown in Fig. 7. Assume that the 
program is 3 lines long and the second line has to be corrected. 

The shown method can be refined in some details: 
- If the new code is not longer than the old one then it can be replaced (e.g. if 

only a value or a variable name was changed); 
- the jump chains resulting from multiple correction can be eliminated. 
By this method line delete and insert can also be solved. Not all the line types 
can be corrected by this method. In general, declarations or definitions cannot 

Before correction 

Line 
Address 
Table 
AI 
A2 
A3 

Binary 
Program 

AI: Iinel 
A2: Iine2 
A3: Iine3 

After correction 

Line 
Address 
Table 
AI 
A2 
A3 

Binary 
Program 

AI: linel 
A2: JUMP A2' 
A3: Iine3 
A2': new Iine2. JUMP A3 

Fig. 7. Scheme of line correction 

be deleted or modified. E.g. if a label were erased then the jumps related to it 
would become undefined (the GOTO statement can be deleted!). In this case a 
full recompilation is necessary. 

The source code is memory resident, the corrections in it and in the 
address table are realized by direct erasure/insertion. 

Debugging 

The development terminal is connected to the PLC under development 
through a high speed serial link. The PLC receiver can cause an NMI in the 
normal run. In the NMI state the variables or graphs can be examined or 
changed in the usual way. An interesting possibility is the LSS (logic state 
store). The storage is solved automatically by the PLC by the method shown in 
Fig. 8. Storing takes place in every program cycle shown in Fig. 1. 

The input-internal-output data field is multiplied and forms an LSS. At 
the end of each cycle the internal data (D) and the output data (0) are copied 
into the next region, and the input data are sampled into this region. So the 
previous region reserves the input data and the results of the previous cycle. Of 
course this is repeated cyclically, i.e. after the last region the first one is the 
following. Breaking the run the data of the last n cycles can be examined. 



HIGH LEVEL PLC LANGUAGE 49 

PLC data memory 

region I region 2 region 3 region 4 

o 
Fig. 8. Structure of the PLC data memory 

References 

1. H. BERGER: Programming of Control systems in STEPS, Volume I Basic software, Siemens 
Aktiengesellschaft, 1980. 

2. M. LLOYD: Graphical Function Chart Programming for Programmable Controllers, Control 
Engineering, October 1985. 

3. P. BRlcH-S. GERBER-H. P. OTTO: Programming of Sequence Controls with the SIMA TIC SS 
Programmable Controller System, Siemens Power Eengineeing, 984 No. 3. 

4. Festo FPC 606 User's Manual; Introduction to Programming, Festo Electronics. 
5. H. TAKAHASHI: An Automatic-Controller Description Language, IEEE Trans. of SW 

Engineering, Jan. 1980. 
6. K. MATSUZAKI-S. HATA-O. OHKOCHI-M. OKAMuRA-N. SUGIMOTO: Programmable Control

ler with a Multiprocessor-based High Speed Interactive Language System, 
CH 1987-8/83/0000-0180, 1983, IEEE. 

Dr. Andnis SZEGI H-1521 Budapest 

4 Periodica Polytechnica Electrical Eng. 321 I 


