
CONCURRENT DIAGNOSTICS 
IN MULTIPROCESSOR SYSTEMS 

J. HLAVICKA 

Department of Computers 
Czech Technical University 

Received March 5, 1987 

Abstract 

The paper presents a survey of diagnostic methods for multiprocessor systems. The 
diagnostic means known so far are first summarized and evaluated from the point of view of 
their applicability to systems with distributed control and specifically to the multiprocessor 
systems. A combination of different diagnostic means is then suggested in order to achieve the 
maximum diagnostic coverage with minimum overhead. 

Introduction 

Highly integrated microelectronic systems can be used in virtually any 
control function, especially there, where high performance, reliability or 
flexibility to changing conditions are required. All these qualities can be 
achieved above all by the use of multiprocessor systems which were made 
feasible especially through the miniaturization of electronic components. A 
multiprocessor system represents a new computing environment which still has 
to be studied from several points of view. The problems awaiting solution are 
above all the distribution of control functions, parallel programming, design of 
interconnection networks and, last but not least, the system diagnostics. 
Although a large amount of work has been invested into this field, there are still 
quite a lot of problems to be solved. 

Many different methods and techniques of investigating the technical 
condition have been suggested and tried since the beginnings of the systematic 
diagnostics of digital systems. Before trying to apply them to the multipro­
cessor systems, let us first classify them in accordance to some criteria. 

Main Types of Diagnostic Procedures 

The diagnostic procedures can be classified in accordance with several 
criteria which are mutually independent. We may e.g. implement the 
diagnostics by some external means or by devices built directly into the unit-

4* 



52 J. HLAVICKA 

under-test (UUT). On the other hand, the diagnostics can be based upon the 
tests performed periodically or upon the continuous evaluation of signals 
supervising the correct function of the system. These two properties can be 
interpreted as two independent criteria classifying the diagnostics procedures 
into four categories according to Table 1. For every cases we can see here also a 
typical implementation of diagnostic procedure. 

Table I. Classification of Diagnostic Functions 

External Internal 

Periodic Tester Maintenance proc. 

Concurrent Duplex, WDP Error code, SIS 

On the vertical edge we can see the classification of diagnostics into 
periodic and concurrent. The periodic diagnostics represent the classical 
approach to testing. The main goal of the periodic diagnostics is to determine 
the exact technical condition of the UUT in specified time intervals. These 
intervals can be specified rigorously in advance, or - which is more frequent 
- determined in accordance with the system's technical condition and its 
workload. In the latter case the diagnostic procedure is in fact not periodic, but 
the term which is due to the standard way of scheduling the maintenance is still 
being used. The traditional way of performing the periodic diagnostics is by 
some external means, e.g. by a tester. The diagnostics performed by a tester are 
usually denoted as "off-line diagnostics", because the UUT has to be 
disconnected from its functional environment and attached to the tester. 

The periodic diagnostics can be performed also internally, i.e. by some 
device built directly into the UUT and constituting its integral part. In the 
context of automatic diagnostics, this role is typically played by a maintenance 
processor [9]. The maintenance processor continuously connected to the UUT, 
performs the so-called "on-line diagnostics". Fig. 1 shows the state diagram of 
on-line diagnostics running under OS Monitor and interleaved with appli­
cation programs. 

JOB FINISHED NO JOB WAITS 

APPLICATION NEXT JOB MONITOR TEST FINISHED TEST 

Fig. 1. State diagram of periodic diagnostics controlled by OS Monitor 



CONCURRENT DIAGNOSTICS IN MULTIPROCESSOR SYSTEMS 53 

If the normal function of UUT is not interrupted, the diagnostic 
procedure is denoted as "in-line". Logically, the in-line diagnostics can be 
performed at any moment only on some parts ofUUT, namely on those which 
are momentarily not used. In smaller UUT's the function of a maintenance 
processor is fulfilled by relatively simple devices which are denoted by a global 
term "built-in self-test equipment" (BISTE). Until recently, the use of a built­
in tester was a privilege of programmable systems. However, the recent results 
in the theory and practice of self-testing made BISTE available literally for any 
type of digital device, no matter how small or simple it is. A typical case is 
shown in Fig. 2 where the test generator is linear feedback shift register (LFSR) 
and the response evaluator is a similar register with parallel inputs (PLFSR). 

TEST START 
TEST GENERATOR (LFSR) , t 

FUNCTIONAL PART 

v " GO/NOGO 
RESPONSE EVALUATOR (PLFSR) 

Fig. 2. BISTE for a small UUT 

A special case of BISTE implementation which we are going to discuss 
later is the mutual testing of processors in a multiprocessor system. Here, the 
role of a built-in tester is cyclically assigned to the processors which otherwise 
perform the normal computing functions. 

The concurrent diagnostics, as opposed to the periodic ones, cannot 
reveal the complete technical condition of the UUT. Instead, they observe the 
outputs generated by the system, signal any deviation from the normal 
function and thus improve the safety of the system. Although many existing 
faults in the system's hardware may go undetected for some time, this concept 
has another virtue: it never misses an erroneous output (which can hardly be 
achieved with the periodic diagnostics). The system having this property is 
called fail-safe or fault-secure. The most important advantage of the 
concurrent diagnostics is the capability to detect and/or to locate the soft 
(intermittent) faults. 

The concurrent diagnostics can again be implemented externally or 
internally. Here the internal implementation, which represents a typical case, is 
based on the use of informational redundancy, i.e. error coding. However, the 
data formats are in many cases defined in advance (e.g. for microprocessors). 
Hence the error coding has a limited applicability and can be used practically 



54 J. HLAVICKA 

only in memory and I/O subsystems. Beyond this, the control signals which 
always have some inherent redundancy can be checked by some added 
checkers (e.g. for opcode and address validity, etc.). 

The internal concurrent diagnostics can be implemented also by the 
algorithmic redundancy, i.e. by repetitive computation of the same task. To 
make this method sensitive also to hard failures (its sensitivity to soft failures is 
obvious), it is necessary to use different algorithms (N-version programming) 
or at least different copies of the same program for every repetition, e.g. by 
software triple modular redundancy (STMR). A simplified version of the 
algorithmic checking is the verification of assertions, (e.g. by substituting the 
roots back into the equation, checking the numerical bounds of the solution, 
checking whether the file is sorted, etc.). 

Still another form of concurrent internal diagnostics is the detection of 
control flow errors by signatured instruction streams (SIS) [2], being a 
combination of hardware and software means. Each linear (i.e. not branching) 
segment of the program is provided with a signature verified at the run time. 
The original signature is computed as a cyclic code character by the compiler 
generating the object code. The verification is done by a PLFSR attached to the 
data bus. Fig. 3 shows the implementation of SIS in a typical microcomputer. 
This method detects all errors in the control flow of the program, but the errors 
in data paths remain mostly undetected. Thus the error coverage in this case is 
relatively low but the efficiency measured by the amount of information 
obtained for the invested means, is very good. 

DATA 

I 

B 
Fig. 3. Error checking by signatured instruction streams 

The external implementation of the concurrent diagnostics must be based 
on an existence of some device which continuously verifies the correct function 
ofUUT. Conceptually simplest is the duplication of processors, memories and 
other subsystems. As this approach leads to a relatively big overhead, a simpler 
processor called watchdog processor (WDP) can be used to perform the same 
function [3]. The basic configuration of a system with WDP is shown in Fig. 4. 
The main processor does the computation, whereas WDP verifies only the 
assertions, i.e. some properties of the result - similarly as in the case of 
algorithmic checking within one processor. As the verification of assertions is 
computationally less demanding, the processor used as WDP can be slower 
and with less memory. The verification is overlapped with the computation of 
the next task. 



CONCURRENT DIAGNOSTICS IN MULTIPROCESSOR SYSTEMS 55 

DATA 

Fig. 4. Watchdog processor for a single-processor system 

Choice of Method for Multiprocessor System Diagnostics 

The characteristics structure of multiprocessor systems initiated an 
intense study of specific diagnostic methods for these systems, although any of 
the above-mentioned methods could be used for the system as a whole. But due 
to the distribution of the control functions we can treat every processor 
independently of the rest of the system. Hence it would be appropriate to 
introduce an additional criterion to those shown in Tab. I, namely the level of 
application of diagnostics procedures. The interpretation of the terms 
introduced in Tab. 1 thus depends on our point of view, e.g. the external 
diagnostics of one processor can be seen as system's internal if the testing is 
done by another processor belonging to the system. In the multiprocessor 
system it is usual to apply the tests at the level of individual processors because 
the presence of several independent program-controlled units makes this 
system ideally amenable to the internal diagnostics during which every 
processor alternativelly plays the role of tester or UUT. Therefore the external 
diagnostics at the system level are usually not considered. 

Periodic Diagnostics 

The periodic diagnostics in multiprocessor systems have been solved 
above all on the basis of the Preparata-Metze-Chien (PMC) model defined in 
[5]. An overview of methods for multiprocessor system diagnostics can be 
found in [6]. 

This approach, although conceptually clear and straightforward, has 
some very serious drawbacks. One of them is a relatively complex intercon­
nection network necessary for the transmission of diagnostic data. A still more 
important problem of fundamental importance is the question where the 
partial test results (i.e. the syndrome) will be evaluated. Concentrating this 



56 J. HLAVICKA 

function in one of the processors would create a bottleneck of the system, 
therefore some form of distributed evaluation of syndrome should be 
considered. 

If we want to simplify the diagnostic graph of a multiprocessor system, 
we must give some more autonomy to the diagnostic functions in the 
individual processors. In the original PMC model no unit is testing itself, i.e. 
the self-test is applied only at the system level. A slight modification of this 
approach is the asymmetric test result invalidation, introduced in the BGM 
model by Barsi et al [7]. The asymmetric invalidation model assumes that every 
unit, even though faulty, can recognize and signal a fault in any other unit. This 
assumption is justified by the fact that an incorrect result of a processor test is 
so obvious that even a faulty unit can easily recognize it. However, there is 
always some danger that the tester unit, although it recognized the error, 
cannot signal it (e.g. because its output is stuck to "correct"). To avoid this 
possibility, we must design the units as self-checking. An error in the 
evaluation and signalling circuitry would be then signalled in the same way as 
an incorrect test result, i.e. as "faulty". 

The diagnosability of a system with asymmetric invalidation is much 
higher than that for the PMC model, namely n-2 units can simultaneously be 
faulty whereas for PMC the upper limit is (n-l)j2 (the system is considered to 
be t-diagnosable if we can identify t faulty units at the same time). This leads us 
logically to the question how far the use of complete self-test (ST) in some or all 
of the system units would simplify the system diagnostics. This problem was 
studied e.g. in [8], however without respect to the structural properties of the 
system (assuming the existence of complete graph). 

It can be expected that using one or more ST units will simplify the 
system-level diagnostics in several ways: 

- simplifying the diagnostic algorithms 
- speeding up the diagnostics 
- reducing the diagnostic graph 

increasing the diagnosability. 
In the extreme case where all units are ST, there are no diagnostic links, 

there is no algorithm necessary for system-level diagnostics (the evaluation of 
individual units is independent) and the exact diagnosis can be found even if all 
units are faulty. All units can be tested simultaneously, hence the whole system 
test is finished after a single unit test time. 

I t can be shown [10] that using one ST unit saves two lines if t = 2. If we 
use more than one half of ST units, the value of t is equal to their number (e.g. a 
system with three ST units and six links has t = 3). In the systems with large 
number of ST units it is advantageous to link every ST unit with all non-ST 
units, i.e. to design the diagnostic graph as a superposition of stars with centers 
in every ST unit. 



CONCURRENT DIAGNOSTICS IN MULTIPROCESSOR SYSTEMS 57 

Concurrent diagnostics 

If the system is to be used for a real-time control, we must above all avoid 
the generation of an invalid control output, i.e. increase the safety of the system 
using the concurrent diagnostics. The simplest way of doing this would be 
assigning the same task always to two different processors and comparing the 
results before their output. If the computational capacity of the system is not 
big enough to let us sacrifice one half of the processors (or of the computing 
time) just for diagnostic purposes, we may use some multiprocessor 
modification of SIS or watchdog processor. 

The use of SIS in a multiprocessor system was suggested in [4]. One 
processor called roving monitoring processor RMP is used for checking the 
program signatures stored in the signature queue SQ of every processor - see 
Fig. 5. RMP cyclically compares the signatures found in the queues with those 
found in the programs. This method, as well as in the case of single-processor 
system, detects above all the errors in program flow. If, on the other hand, the 
errors in data flow represent our primary concern, we must use some 
multiprocessor version of data checking. 

PROCESSOR 1 PROCESSOR 2 ... PROCESSOR N 

LFSR LFSR LFSR , , .. 
sa sa sa 
~ ~ SIGNATURE BUS ~ 

~ 
I RMP I 

Fig. 5. Roving monitoring processor checking the signatured instruction streams in several 
processors 

One of the possibilities is the generalization of the watchdog processor to 
the multiprocessor system, as shown in Fig. 6. One WDP is connected to a 
group of functional processors whose results are to be checked. WDP checks 
again only the assertions, which is much faster than the computation itself. 
Assuming that the WDP is of the same type as the functional processors, the 
number of processors served by one WDP is given by the relationship between 
the duration of one computation task and the verification of assertion. 

Fig. 6. Use of watchdog processor in a multiprocessor system 



58 J. HLAV1CKA 

Conclusion 

This short survey could present only some of the many alternative 
solutions of the problem of multiprocessor system diagnostics. Its main goal 
was to show that mutual tests of the processors are not always the best and by 
fat not the only solution. There are still some more approaches to fault 
handling which were not mentioned, although they are very important too (e.g. 
the automatic faUlt masking, error recovery, etc). 

The diagnostic methods for digital systems develop with the same speed 
as the technology and architecture, and on all levels of logical design the 
general trend towards self-testing and self-checking can be observed. The 
choice of a suitable diagnostic method for a mUltiprocessor system is a complex 
optimization task in which many input values are to be taken into 
consideration. We try in fact to reach the maximum fault coverage for 
minimum overall cost, but at the same time we should achieve the required 
level of reliability and security without decreasing the performance of the 
system. None of the methods presented above can guarantee the fulfillment of 
all these requirements, therefore it is necessary to combine them. Verification 
of the quality of a solution is possible practically only through simulation with 
fault injection or on a hardware model. First commercially available products 
with built-in diagnostic functions indicate that the acceptance of diagnosa­
bility criteria will soon become an industrial standard. 

References 

1. SIEWIOREK, D. P.-SWARZ. R. S.: The Theory and Practice of Reliable System Design. Digital 
Press, 1982. 

2. SHEN, J. P.-SCHUEITE, M. P.: On-line Monitoring Using Signatured Instruction Streams. 
Proc. International Test Conference, Philadelphia, Oct. 1983. pp. 275-282. 

3. MAHMOOD, A.-McCLUSKEY, E. J.-Lu, D. J.: Concurrent Fault Detection Using a 
Watchdog Processor and Assertions. Proc. International test Conference, Philadelphia, 
Oct. 1983. pp. 622-628. 

4. TOMAS, S. O.-SHEN, J. P.: A Roving Monitoring Processor for Detection of Control Flow 
Errors in Multiple Processor Systems. Proceedings ICCD, New York. pp. 531-539 
(1985). 

5. PREPARATA, F. P.-METZE, G.-CHIEN, R. T.: On the Connection Assignment Problem of 
Diagnosable Systems. IEEE Trans. Comp., vol. EC-J6, pp. 848-854 (Dec. 1967) 

6. FRIEDMAN, A. D.-SIMONCINI, L.: System-Level Fault Diagnosis. IEEE Computer, No. 3, pp. 
47-53 (1980) 

7. BARSI, F.-GRANDONI, F.-MAESTRINI. P.: A Theory of Diagnosability of Digital Systems. 
IEEE Trans. Comp., vol. C-25, pp. 585-593 (June 1976) 

8. ZRELOVA, T. I.: Self-Diagnosis of Digital Systems which Contain Parts with Self­
Checking Built-in Circuits. Automation and Remote Control, No. 2, pp. 123-132 (1984) 



CONCURRENT DIAGNOSTICS IN MULTIPROCESSOR SYSTEMS 59 

9. LIU, T-S.: Maintenance processors for Mainframe Computers. IEEE Spectrum, No. 2, pp. 
36-42 (Feb. 1984) 

10. HLAVICKA, J.: Diagnostics of Multiprocessor Systems with unit Self-Tests. Submitted for 
publication in Proc. 11th World Congress of IMEKO, Houston, USA (1988) 

Doc. Ing. Jan HLAVICKA, DrSc 
CVUT-FEL, Dept. of Computers 
Karlovo nam. 13, CS-12135 Prague 2. 


