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Abstract 

It is shown that a modified feedback measuring circuit for ADC-s can perform as a 
measuring system for ADC channel profile measurements (i.e. measurement of the stochastic 
behaviour). A mathematical model of the measurement is given. The measured data are used for 
constructing a stochastic model of the ADC. which provides us with information about ADC 
errors. 

Introduction 

Theoretically ADC-s are deterministic devices-the same input will 
always result in the same output code at an ideal ADC. But this is not the case 
at real converters-there are certain input values or rather input intervals 
where the output code can be different for repeated conversions. This effect can 
produce serious calculation problems during the evaluation of A/D conversion 
results. since theoretical examinations (e.g. the quantizing theorems [lJ) 
consider ADC -s as deterministic devices. In this article we examine the effects of 
this stochastic behaviour. 

The channel profile 

The values of the switching points-the input values, where the output 
code changes take place-are well defined at ideal A/D converters, but not at 
the real ones. Figure 1. shows the behaviour of an ideal and a real ADC around 
the switching point of code lvl. 

While at the ideal converters the output code belonging to an input value 
can be determined with absolute certainty even in the very neighbourhood of 
V:\fid only probability values can be given for the occurrence of an output code 
at real ADC-s. We define V:\fr-the input value, where the occurrence of the two 
adjoining output codes are equally probable-as the effective switching point. 
(As the measurement results prove, the probability function is monotonous in 
the uncertainty interval, hence V:\f r is a well-defined value.) Generally V\fid =1= 

V\f r' 
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The stochastic behaviour can be characterised by the channel profile [2]. 
The channel profile belonging to the output code 1\1 is the probability of 
occurrence of A1 as a function of the input signal. Figure 2 [2J shows different 
possible channel profiles. 

It can be seen, that the 50~/o point, Vu, has different values at different 
channel profiles. 
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Fiy. 1. Switching point of a) a theoretical ADC (V~I'd) and b) of a real one W:WJ Real ADC-s have 
uncertainty input intervals around the switching points, where the outcome of the output code 

decision is not deterministic. p.\f(x) shows the probability of the occurrence of code M 

~I _______ -jl Mth quantization level 
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Fig. 2. Possible theoretical channel profiles 

The setup of the measurement 

Among the many ADC testing circuits only those measuring the values of 
the switching points can be made suitable for measuring the channel profile [3J, 
[4]. We found, that the quickest of these is the measuring circuit with a 
feedback [5]. Figure 3 shows the modified version, which is already suited for 
measuring the channel profile. The difference between this and the one 
described in [5J is, that IV: I and IV 2 I are not necessarily equal here. 
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The system operates as follows: the controller sends the examined code M 
on one input of the comparator, while the ADC-which continuously converts 
its own input-is connected to the other one. The input signal of the ADC 
increases or decreases in accordance with the output of the comparator, 
because this signal connects the input of the integrator-aided by switch K­
either to the positive Vi or to the negative V 2 voltage. As a result we will find a 
series of M and M + 1 codes on the output of the ADC, supposing that the 

Fiy. 3. Channel profile measuring setup 

parameters are suitable for not producing other codes (i.e. the output of the 
integrator does not change more than the LSB of the ADC during one 
integration period). If the absolute values of the two voltages Vi and V2 are 
equal, both codes will occur with a probability of 50%, and the mean value of 
the ADC input-measured by the DVM-will be the effective switching point, 

V:u c ' 

By changing the ratio of the negative and positive integrator input 
voltages, the channel profile can be measured, as shown below. 

Mathematical model for the measurement 

Let I ~: 1= k. Supposing that during one cDnversion period of the ADC­

with the integrator input voltage v~ -its input increases with L1x, then-at the 
appropriate comparator output, and V 2 as the input voltage of the 
integrator-the ADC input will decrease with k-L1x. The procedure is the 
following: 

Let us choose a random ADC input voltage in the uncertainty interval of 
the channel profile of code M: Xl' During the next con version period the 
integrator output will either increase with a probability of P/I1(x d. or decrease 
with a probability of 1 - PM(x 1 l. depending on the decision of the ADC. Thus 
the next input value will either be Xl + L1x or Xl - k· L1x. and the next decision 
takes place with this new input value. 



114 li. I/IJHOS.U ) 

In the following we show, that given a channel profile and a value k, with 
the above setup shown in Fig. 3. we can measure with good approximation a 
point of the channel profile determined by k. By changing the values of Vi and 
V;-, the value of k can be changed, thereby the different points of the channel 
profile can be measured. 

---j----+-------=~-- x =VIN 
x, 

Fig. 4. Possible uncertainty interval of the channel profile. It can be seen, that choosing a random 
input value x 1 the probability of the output code being lvi is p.w(x 1 }--and this is the probability 
of the integrator output being increased during the next conversion period. The output code will 
be iH + 1 with a probability of 1 Pw(x 1)' and in this case the integrator output will decrease 

According to the theory of Markov-chains the following is true: choosing 
any starting point in a finite interval with a probability function PM (X), that is 1 
downwards the internal and 0 upwards it, and with a finite number of possible 

TI 

states there exist Po, Pl" .. Pn probabilities, that L Pi = 1, and the probability 
i=O 

of being; in the i-th state is Pi' (In other words: our model is a Markov-chain and 
it tends to a stationary distribution.) 

It is to be remarked. that the finite number of states is a theoretical 
assumption, which cannot be fulfilled in reality, because of time and voltage 
uncertainties. But decreasing the value of L1x-and thus tending to a 
continuous Markov-chain-the error caused is negligible. 

Supposing that k is an integer, our model fulfills the requirements of the 
above statement. By restricting k to integer values we can only measure some 
discrete points of the uncertainty interval of the channel profile, but this will 
provide us with enough information about the uncertainty interval. It can also 
easily be seen, that the uncertainty internal determines the whole channel 
profile. Supposing also, that L1x is not less, that the tenth of the uncertainty 
interval k must be not more than 10. (This was the smallest possible L1x value we 
could realize, because circuitry noises could falsify the results if more points 
were to be measured.) 

According to Fig. 4 Pi can be determined from 

i= 1-k, . . . ,k (1) 
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The reason for this is, that there are only two states from where the ADC input 
can arrive at the state Xl during one conversion period (Pi is the probability of 
being in the state xJ 

a) from x i - l' but only, when the integrator input is positive (the 
probability of this is PM(Xi _ 1)) and hence its output will change by exactly .::lx, 
thus arriving at Xi and 

b) from Xi+k' when the integrator input is negative, hence changing k·.::lx 
and arriving at Xi once again. Let us denote with Xo the state, where the 
uncertainty interval begins (P M(X O) = 1 and PM(x 1) < 1), so the smallest possible 
state to be reached is Xl k> because downwards integration is not more 
possible, when i < 1. Similarly, if X k is the smallest state, where p, .. Ax) = 0, then 
the highest possible state to be reached is X k . 

The above equations form a homogeneous linear equation system: 

-I 0 0 
o -1 0 
o 0-1 

I-PM(xd 
I-P.u(:l:z) 

I- P.u(x3 ) 

o 
0 -1 0 

1 -1 0 
1 -I 0 

1 -1 
1 

0 
-I 

1 
o 
o 

1 -1 0 
1 

P-k+ 1 

P-k+ Z 

Po 
PI 
pz 
P3 =0 
p.,. 

Ps 

Pk- Z 

Pk-l 
Pk 

(2) 

Solving this equation system for certain k values, we can determine the Pi 
probabilities belonging to the given k channel profile and code M from the 

k 

general solution of the equation system, using that L Pi = 1. It follows from 
i= 1 k 

the theory of Markov-chains, that the solution exists and is unique. Out of 
these Pi values-after a large number of measurements-the following mean 
value can be formed: 

k 

Mk(X)= L PiXi· (3) 
i= 1-k 

We state, that with this above mean value we can measure the points of the 
channel profile as a function of k at certain channel profiles (see next 
paragraph). At other channel profiles these points will be obtained with a good 
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approximation. To a given k there belongs the k
100 ~~ point of the channel 
+1 

profile (i.e. the probability of the occurrence of code M in this point will be 

100 ). It can easily be seen that-by reflecting the channel profile on the 
k+1 

normal axis of the uncertainty interval-the (lOO - k
1 
00 )~;;; points can be .+ 1 

measured, if k is a reciprocal value of the integers, because of the symmetry. 

100% 

50 % "----r-----. 

__ +-__ -1-__ ----'''--__ X = V IN 

VMmeasured VMr 

Fig. 5. Theoretical channel profile causing maximal distortion at our measurement. The reason 
for this distortion is that the measuring procedure builds a weighted mean of the channel profile 

as a result of equation system (2) 

Using this model, the results of the measurements can be predicted for 
any given channel profile by solving the equation system (2). It was solved for 
many different channel profiles by the aid of a computer and the results are the 
following: 
- If the channel profile is linear in the uncertainty interval, the obtained result 

of the measurement shows the points of the channel profile without any 
predetermined error (the distortion is 0). The result is independent of the 
initial value and so of the Xi values. 
At non-linear channel profiles a distortion will occur at some or at all 
measured points depending on the shape of the profile. We can see an 
extreme case in Fig. 5 where the distortion is nearly equal to half of the 
uncertainty interval. 

Our measurements on AD7570 SAR-type ADC-s (see also [6J) proved, 
that real channel profiles belong with good approximation to the first, linear­
type group (with possible small deviations tending to a very flat Gauss­
distribution), and thus our measuring setup measures the real channel profile 
with a good approximation. 

The difference between the realisation and the model is, that the input 
value of the ACD will not always change by exactly Llx or k·Llx during one 
conversion period, so there are an infinite number of possible states here, but­
as we have seen, that the initial value and the set of x;-s does not influence the 
results of the measurement at the linear-type channel profiles-this drift will 
not cause an error in the measurement. 
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Results 

The setup is suitable for measuring other ADC properties, too. Thus the 
measurements are not restricted to the channel profile measurement only. A 
Hewlett-Packard measuring system at the Department of Measurement and 
Instrument Engineering at the Technical University Budapest was used. A 
problem arose at the realisation of an accurate switch, which was constructed 
of star-connected FETs. We measured AD7570 10 bit ADC-s, Llx being 1/50 
LSB. The value of the linearity errors (counted from the values of the 50% 
points) proved to be 0.2LSB ± 0.05 LSB, which is well under the specified 0.5 
LSB. The channel profile is global, i.e. it is uniform at all switc!hing points and 
its uncertainty interval is linear, with a Ll w width of 0.1 LSB ± 0.05LSB. With 
the given Llx value and the proof in the previous paragraph, the channel profile 
measurement is accurate with the given error bounds. 

P", (xl 

100% 

50c:. 

/:;W 

VMR - VM- 1R = LSB 

/:;W=O.l LSB= 0.05 LSB 

---/V'-Lf-----t-----t'-V~, -- V'N= x 
M- 1R MR 

Fig. 6. Result of the channel profile measurement: the uncertainty interval is nearly linear 

The ADC transfer characteristics and the channel profile were examined 
as a function of some environmental factors, too. The behaviour of one 
switching point as a function of temperature is shown on Fig. 7. 

All switching points behaved similarly. So for the AD7570 the 
dependence upon temperature is O.3LSB in the interval of [ - 5cC, + 60°C]. 
This dependence offsets the transfer characteristics, but causes no distortion. 
Its behaviour is hysteresical, which is possibly caused by some huge time 
constants. The channel profile was not influenced. 

The measurements were repeated several times with altering supply 
voltages, but these did not influence the results. 

Influence of ADC errors on momentum estimations 

On the basis of our results we tried to examine, that by using the analysed 
ADC for momentum estimations, how the results would match those of the 
quantizing theorems[l]. These theorems are strongly based on the fact, that 
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the ADC is ideal. It is shown in [17J, that even the measured linearity error of 
0.2LSB can cause considerable errors in the momentum estimations. Therefore 
the linearity error of the ADC must be diminished to obtain reliable results. 
Several methods can be applied (e.g. [8J, [9J). All of them use some sort of 
supplementary circuitry and the one described in [8J uses an averaging 
method. This is important when considering the effect of the channel profile. It 
is proven in [2J, that if the channel profile is global, the equations resulting 
from the quantization theorem-determining the momentums of the input 
signal--remain valid. During the proof the fact is used, that the converter has 
no linearity error. Using the averaging method the converter will fulfil much 
better this requirement. 

LSB = 0,01 V 

0,974 

---,--+--,--,--,---,----,----,--- T (OC) 

- iD 0 10 20 30 40 50 60 

Fig. 7. Value ofa switching point as a function of temperature, Similar hysteresical behaviour can 
be observed at all switching points 

As our measurements showed that the channel profile of these converters 
is, in fact, global, we can state that diminishing the linearity error of such an 
ADC to near 0, the stochastic behaviour will not cause distortion when 
estimating the momentum, Variance, of course will alter by an additive 
constant, because of the quantization. 

A stochastical model of the ADC 

The ADC can cause the following errors during the realization of the 
quantization [10]: 

- linearity errors 
stochastic behaviour of the output levels because of internal circuitry 
nOIses 

- dependence upon environmental factors 
- gain and offset errors 
- frequency errors at high-speed input signals 
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The offset and gain errors are easy to compensate, and in general 
frequency errors are not dealt with. One environmental factor, temperature, 
causes an error which, being additive, can also be compensated. The linearity 
errors cause distortion, but with supplementary circuitry they can be 
diminished to small-in some cases negligible-values. The remaining-and 
related-factors all operate as a small amplitude dither superponing on the 
input signal, therefore they could be averaged out, and so will not cause 
distortion, but increase the variance. 

gain. offset 
y & y' 

I---l---<>l temperoture 

AID 
compensation 

Fig. 8. Stochastic model for ADC-s 

Ilneanty y" 
error 

compensation 

Linearity error compensation is perhaps the most serious problem when 
dealing with ADCs and is not a subject of this paper. It is true, however, that for 
obtaining reliable results it must be taken into consideration. 

According to the above, we can state, that if the signal x(t) satisfies the 
conditions of the quantization theorems, then the moment urns of x can be 
determined from the quantized y" signal. TIws the ADC, completed with the 
devices shown in Fig. 8 does not cause distortion in the moment estimations [11]. 
The whole or partial lack of these compensational devices -i.e. using of y or y' 
as output signal-results in a distorted output signal, that is to be used with 
further error examinations only. 
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