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Abstract 

The problem of determining the characteristics of a sine wave from its discrete spectrum is 
considered. The nontrivia1ity of the problem is caused basicly by a phenomenon called spectral 
leakage, that is, by the fact that the spectral envelope of a single sinusoid forms a bell-shaped 
curve, even in the ideal noiseless case. In the paper a simple and self-contained treatment of 
spectral leakage is presented and a computationally efficient frequency estimation method is 
derived, taking into consideration different types of time-domain windows. 

Introduction 

The development of digital signal processing involves the frequent 
application of Discrete Fourier Transformation (DFT) or Fast Fourier 
Transformation (FFT). But, at the same time, discrete spectra raise some new 
problems, which have been out of sight in connection with continuous spectra. 

One of the important problems is the following: if the input signal to an 
FFT analyzer contains a sine wave, then, even in an ideal noiseless case, it is not 
trivial to determine its frequency with high accuracy from the discrete 
spectrum. This difficulty is caused by the contradiction between the continuity 
of input frequency and the discrete position of resulting spectral lines: if the 
frequency of input sinusoid is not an integer multiple of the base frequency, 
then this sine wave is represented by more than one spectral lines, even in an 
ideal noiseless case. The envelope of these lines forms a bell-shaped curve, 
called selectivity curve. 

The phenomenon is known as spectral leakage and several attempts have 
been made to develop methods of higher accuracy for the estimation of the 
exact frequency from discrete spectra (see [1 J, ... , [5J). 

Here we present a simple and self-contained treatment of spectral leakage 
and a computationally efficient method for high accuracy frequency estimation 
from discrete spectra with different time domain windows. 

The work outlined here has been part of a research project at the 
Poly technical University of Budapest, Microwave Department, to evaluate 
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radiofrequency signals in course of spectrum monitoring ([6J, [7J, [8J). 
Nevertheless, the results are of wider interest, therefore, we present them in 
general form, disregarding to the original special motivation. 

Selectivity curve for a single sinusoid with different 
timedomain windows 

We consider the sampled signal 

s(kLl t) = Asin(2n:jkLl t + cp) 

where f = 40,10 = 1/T, T = N Llt. 

(k = 0,1, ... ,N - 1) 

The complex spectral lines of this signal for rectangular window are 

1 :V-I , , 
Si= - L s(kLlt)e- }21tlfokJ! 

N k=O 

(1) 

(2) 

(by the definition of DFT). Using the particular form of s(kLlt) and applying 
Euler's formula Si can be written as 

A ,\~I '(O-'f k' "-) " 'f kA S,= L, e}_H/, OeJr·<p·e-}_1t! O.Jr_ 

! 2jN k =1 

A \.,1 '(" -kLl _ - L, e-) _nl,) 0 , r 

2jN k=O 

<p)e - j2nifokLlr (3) 

After elementary calculations, using the summation formula for finite 
geometric series, we can get 

A~<P ~2"Ll), - 1 
Si = 2jN . ~2"J).i.v -1 

Aej<p e - j2rrLl). - 1 
- 2j N . ej2n(JJ.+ 2i)!N - 1 (4) 

where Lli. = i. - i. Expression (4) gives the exact complex vaiued selectivity curve 
for a single sinusoid (with rectangular window). If i. is an integer (that is, the 
frequency of the sinusoid is an integer multiple of fo) then the only nonzero 
value of Si is S ),' Otherwise (if i. is not integer), the absolute value of the S;s form 
a sampled (sin x)/x shaped curve, as we shall see below. This phenomenon is 
called spectral leakage. The main problem appears now as determining the 
frequency of the input signal form the S;s by means of possibly little 
computational effort, but at the same time as exactly as possible. 

Since the exact formula for Si is too complicated for further con­
siderations, it is useful to derive an approximation. Let Mi and Hi be the first 
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and second members of expression (4), respectively. That is, Si = Mi + Hi' We 
are going to show the legality of the approximation S i ~ M i' The relative error 
of this approximation is 

=ls~exact)-s~approx')I=I(Mi+Hi)-Hil=! H;/IVli I 
erel s\exact) j\1.+ H. 11..LH.lt\1. 

I I ... - I I i l i - I 

(5) 

If I Hilvfil is small enough, then 

(6) 

so it suffices to show that IHiMil ~ 1. 
We can assume that 2nJ)jN ~ 1, which implies the approximation 

ei2nJ }.jl;; ~ 1 + }2n!J)./ N (7) 

can be used with negligible error. Then IHilv!;I can be written as 

I
H-I I 2nJ).jN I 
M'i = le - j471i,\ - (1 + }(2nlJ).) . e - j4rri S . 

(8) 

Because of the large value of IV (e.g N = 1024) the last imaginary member in the 
denominator of expression (8) is negligible. Thus 

I Hil~ 12nJ)./NI = n~2 J). 
Mi -le j47ti/iY_11 N' l-cos(4ni/N) 

(9) 

Expression (9) shows that if we consider the "important part"of the spectrum, 
which is the largest spectral line and its neighbourhood (where IJ).I is small) 
and also i is not extremely small or large in the range (0, IV /2), then I H;/lH d is in 
fact negligible. For example, if IJ).I::; 1.5 (that is, we consider the largest 
spectrealline and its two neighbours), N/12<i<5NI12 and N=1024: then 

IH;/A1il ::::::0.01 

so the relative error is about l~o' Thus we can use the approximation Si~M;, 
that is 

(l0) 

Applying (7), the result can be made simpler: 

Ael4? el 2 ;rJi. 

Si~ - 4n J)' (11 ) 

It is worth to remark that N is no longer part of the expression. 

4 PCnOdlGI Pol: tcchnH . .'a ElcctncJ.i Eng. ::::: -+ 



124 1. "AliA(;(} f . . \()I . .{A 

If we are interested in the shape of the selectivity curve, it is useful to take 
the absolute value of (11): 

ISI-A ----
~ je

j
21tJ;'_11 _A·lsin(x)i 

,- 4rrl [j;,1 :2 x 
(12) 

where x = rrLl;,. This shows clearly the main shape. 
Turning back to the exact expression (4), we can realize that the second 

member can be regarded as a perturbation caused by an other selectivity curve 
of the same type, whose center is positioned symmetrically at the frequency - f 
We refer this perturbation as mirror-eHeet. Thus. the approximative formula 
(10) is the result of neglecting the mirror-effect. But it still saves the periodicity 
with respect to N (that is. Sj+.\'=S;), which is a consequence of sampling. The 
second approximative formula (11) does not show this periodicity any longer. 
F or this reason. it is acceptable first of all if we are near to the center of the 
selectivity curve and far from the endpoints of the range (0, N /2). 

It is natural to ask whether the exact expression (4) can be factorized such 
that the different effects become separated? These effects are the amplitude and 
phase of the input sinusoid, the main shape of selectivity curve caused by 
spectral leakage, the effect of spectral periodicity caused by sampling and the 
mirror-effect. A some\vhat lenghty but elementary calculation shows that this 
factorization in fact caL' be done and expression (4) can be reformulated as 

S = 1 4ej (P F(l) F(2)P3l 
I ')' I I I 

(13) 

Using the abbreviation x=rr.di.. the factors F)ll. n21
• n31 in (13) are the 

following: 

- Main shape of selectivity curve caused by spectral leakage: 

(\ 4) 

- Spectral periodicity caused by sampling: 

2x IV 

cos(2x N) 1 +jsin(:2xN) 
( 15) 

- Mirror-effect: 
2x e j2x.\ - 1 

j2arctant~:~: - 1) . -=--;-o-----,-,-~~-
e j2xS. e - j-+1tj .\ - 1 ( 16) 

All the considerations have been done so far for rectangular time­
window. This is the simplest one, but its main disadvantage that moving away 
along the frequency axis from the frequency of the input sine wave, the 
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selectivity curve does not decrease fast enough. The rate of decreasing is 
roughly proportional to l/L1;., as it can be seen from expression (11). This gives 
the approximate rate of 6 dB/octave. 

The need for a rapidly decreasing selectivity curve is based on the 
intention that in the presence of more sinusoids we should like to handle them 
separately, that is, we wish to neglect the interrelation among the selectivity 
curves. Obviously this causes less error in the case of a more rapidly decreasing 
curve. A good /solution of wide practical use is the well-known Hanning­
window, which' weights the input signal by the function 

w(t)= ~ (l-cos(2nfot)) ( 17) 

This guarantees-as we shall see below-a rate of decreasing which is 
roughly proportional to 1/(L1;l, that is approximately 18 dB/octave. 

The price we have to pay for the less interrelation among selectivity 
curves belonging to different sine waves is that the top of the curve becomes 
flatter. In other words, there is more uncertainity in the frequency deter­
mination of a particular sinusoid. In general, selectivity curves belonging to 
different time-windows show the behavior which could be characterized by a 
certain trade-off between far-selectivity (that is, the resistance against 
interrelation) and the flatness of the top (the uncertainity in frequency 
determination). 

A possible compromise between rectangular and Hanning-windows is 
their linear combination, called Hamming-window. It can be described by the 
function: 

w (t) = _1_ (1- a COS(2nfot)) 
l+a 

(0:::; t:::; T) ( 18) 

The parameter" a" varies in the range [0,1]. If a = 0, we get back the rectangular 
window; a = 1 gives Hanning-window and the intermediate parameter values 
present different Hamming-windows. We are going to give a unified treatment 
for the above mentioned window types, letting the results depend on parameter 
H " a. 

Suppose now, the input sine wave is weighted by the window function 
given by (18). Denote the rh complex spectral line of the corresponding DFT by 
5~a). Making use of trigonometrical identities we can easily express 5~a) by the 
spectral lines of the unweighted (that is, rectangularly windowed) sinusoid: 

(a) _ 1 (' 1 1 ( ) 
5; -1+a.);-21+a 5;-1+ 5 ;+1 (19) 

4* 
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Substituting expression (4) for Si we could get an exact formula for Sja), but that 
would be too complicated for the applications. Instead, substituting the 
approximative formula (11) we conclude: 

s\a):::: __ 1_ . Ae
jtp 

(e - j2n::1). _ 1)' (1 - a),1). 
2 

- 1 (20) 
1- l+a 4n: ,1/.(,1/.2-1) 

Naturally, for a = 0 we get back (11), the formula for rectangular window. 
Substituting a = 1, we are given the case of Hanning-window: 

Aeitp ej2rr:1). - 1 
S\H):::: __ . __ ~_ 

I - 8 n: ,1 i.( ,1 i. 2 - 1) 
(21 ) 

The improved far-selectivity ofHanning-window (compared to the rectangular 
one) can easily be read from (21): the rate of decreasing is roughly proportional 
to 1/,1i. 3

, which corresponds to about 18 dB/octave. 

Determination of the characteristics of input sinusoid 
from selectivity curve 

Assuming the input signal is a single sine wave, we wish to determine its 
frequency, amplitude and phase from its DFT. The nontriviality of this 
problem is caused basicly by spectral leakage. 

Obviously, we need to make use of the information hidden in the spectral 
lines of great magnitude. since the smaller ones are already not reliably 
measured because of the unavoidable presence of noise. Denote the index of 
spectral line of maximum magnitude by io and let 

jSl~)j 
'l.=-js<a) j 

lo- 1 

Substituting formula (20), after cancellations we get 

2 + ,1i. 1 -(l-a),1i.2 

'l.= l-,1i. ·j(l-a),1i. 2 +2(I-a),1i. aj 

(22) 

(23) 

The relation between Y. and ,1i. can be easily tabulated and since Y. and io 
are known from the DFT, thus the frequency of the input sine wave can be 
reached as f= (io + /j i.l.f~. after determining the value of ,1 i. from (23). 

In the most important special cases expression (23) becomes much 
simpler. If a = 0 (rectangular window). then 

,1i. + 1 
Y.= TJ1I (24) 
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which yields 

ex-I 
if ISio+ 11 > ISio 11 

Lli, = --- if ISio+ 11 < ISio 11 ex-I 

0 if ISio+ll=I Sio 11 

In the case of Hanning-window (a = I) expression (23) becomes 

2+ Lli, 

which yields 

ex= ---
1- Lli, 

ex-2 
Lli,= 

ex+l 
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(25) 

(26) 

(27) 

Having determined the frequency j; then the amplitude A and phase <p can 
be calculated in a straightforward way by resubstituting Lli. into the expression 
of Si' plausibly taking io for i. 
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