
AN ELECTION ALGORITHM 
FOR A MULTIPROCESSOR CONTROLLED 

DIGITAL EXCHANGE 

G. NEMETH 

Institute of Communication Electronics. 
Technical University. H-1521 Budapest 

Received June 2, 1987 
Presented by Prof. Or. S. Csibi 

Abstract 

A mUltiprocessor controlled distributed digital exchange is studied in case of some failure 
types. The recovery from a failure is based on temporary suspension of the normal operation and 
the active processors elect a coordinator controlling the reconfiguration of the syste'11. The 
algorithm developed for such an election is used at initial (cold) start of the system and in case of 
reintroducing one or more processors repaired as well. The failure environment is given and the 
assertions are proved verifying the algorithm described. 

Introduction 

The integration of communications and computer techniques makes 
attractive the development of multiprocessor controlled distributed digital 
exchanges. A pilot project to provide extensive phone and data services for 
widely varying number of subscribers led to the development of the system PRS 
(peM Remote System) [1]. Its main features are the following: digital remote 
exchange concentrator with internal traffic, distribution of call processing 
functions, cooperation with the higher level exchange through common 
channel signaling, high level of modularity with respect to capacity and cost as 
well, extensive maintenance software and automatic reconfigurability in case of 
failures. 

The control of a digital exchange differs from the control structures of 
other fields [2]. 1. High level of modularity is desirable in functions, capacity 
and services, 2. the effects offailures should remain as confined as possible, and 
3. the accomplishment of services is not strictly required. These characteristics 
raise the possibility of a control system with mUltiprocessor structure (1. and 2.) 
and task queuing (3). 

The use of single-channel peM codecs and other communication­
oriented LSI circuits make possible the introduction of peM transmission 
principles down to the level of the subscribers. Thus the distribution of the 



210 G. SE.1f ETI! 

exchange into smaller cooperating units, and the installation of these units as 
near to the subscribers as possible has become feasible. Such a distributed 
architecture, digital exchange is shown in Fig. 1. 

The terminal unit PRT preprocesses the subscriber lines. To increase its 
availability its common functional units are separately duplicated providing 
flexible reconfigurability. 

,-------1 
I I 
I I 

EF 

PRC ,., 

PRC , .2 I 

PRC ,.3 , I 
I 

I I 
I I 
I ___ J 
I 

EF - Subscnber line I 
I 

R - Repeater I 
PRT - Remote terminal 

l~ PRC/PK - PCM/TST/swltch 

PRC/C - Central controller 

SL - Service line 

PRA - Network adapter 

KK - Trunk 
I PRCj L _______ 

Fig. 1. Structure of the PRS (peM Remote System) exchange 

The dynamically reconfigurable switching stage PRC/PK performs time­
space-time switching on 2 Mbit/s lines. The control of the switching stage and 
the majority of the call processing functions are performed by the control unit 
segment PRC/C. 

The unit PRA connects the system to the higher level exchanges of the 
network. The man-machine communication (including the operational and 
maintenance functions) is provided through this unit as well. 

From the point of the control structure the system may be considered as a 
distributed computer system consisting of autonomous nodes able to 
communicate with each other through virtual transmission pathes and 
working on a common goal. In case of one or more node failures the remaining 
active nodes must adapt themselves to the condition in order to be able to 
continue their work on their common goal. 



AS ELECTlOS ALGOR/TH,II FOR A ,I/U.TlPROCESSOR COSTROLLED DIGITAL EXCIIASGL' 211 

Several strategies are possible to deal with this situation. In this paper a 
strategy is studied where the normal operation is temporarily suspended and 
then the system is reorganized. The active nodes elect a coordinator as the first 
step of the reorganization. This elected coordinator will control the 
reorganization of the system. Obviously, in a distributed computer system a 
distributed election algorithm is preferable. Besides, the election algorithm 
should preferably deal with the initial (cold) start of the system or a node, and 
with the reintroduction of nodes repaired after previous failures as well. 

Election algorithm 

Observe, please, this is a kind of the mutual exclusion problem, which can 
be solved by the use of a general finite state automaton. A rigorous design 
method may be used with the following steps: 
1. Setting the ASSUMPTIONs corresponding to the system and its 

limitations. 
2. Determining the CONSTRAINTs (the criteria of the proper solution) for the 

system studied. 
3. Design of the FINITE AUTOMATON MODEL (internal states, events). 
4. PROOF of the correctness of the algorithm chosen. 

Several papers have studied such algorithms (e.g. see [3]), however, the 
algorithm depends upon the environment of the system. We have the following 
ASSUMPTIONS. 
1. All nodes run the same election algorithm. 
2. If a node fails it becomes inactive. 
3. The communication subsystem does not fail. 
4. The nodes have different integer values as their identifiers. 
5. Node y processes the messages accepted from node x in the same order as 

they were sent by node x. 
6. The message transmission delays between any node pairs are upper 

bounded. 
7. A node sends immediately an acknowledgement of a message received. 
8. All nodes send messages together with times tamps from their own clocks. 
9. All nodes have their own clocks satisfying the following two conditions: 

9.1. If a and b are events in node x and a happens before b then Cx<a) 
< Cx<b) (Cx<a) is the value of the clock of node x at the instant event a 
occurred); 

9.2. If a is the sending of a message from node x and b is the reception of the 
same message by node y then Cx<a) < Cy<b). 

Assumptions 1, 4, 7, and 8 are simply provided by the software of the 
processors. For assumption 2 the hardware and software error checking means 



212 G. Sf::.lfETH 

change the failure sensed to a total crash. Assumption 9 means that each node 
has its own clock, running at different speeds and set to different clock values, 
but a form of logical clock system is implemented based upon timestamped 
message exchanges among the nodes [4]. Assumptions 3, 5, and 6 are provided 
by redundant transmission pathes dynamically reconfigurable in case of any 
errors (the messages are protected by proper coding) and each message has a 
serial number to be able to restore the proper order. 

In normal operation the coordinator of the system sends periodically life 
messages to every active node (from its list, see below) and waits for 
acknowledgements. If within a fixed time period it does not receive an 
acknowledgement then it considers the node as a failed one and starts a new 
election-reorganization procedure. All other nodes wait for a life message from 
the coordinator for a fixed time period and if anyone of them does not receive it 
within this period then considers the coordinator as a failed one and starts a 
new election-reorganization procedure. 

The problem is to design an algorithm such that one can prove that there 
is a unique controller to be elected as a coordinator (CONSTRAINT A) in a 
finite time (constraint B). Unfortunately, it is not possible to fulfil constraint B, 
because a sequence of failures could pro vent any election protocol from ever 
electing a coordinator. So instead we require that if no infinite series of failures 
interfere with the election, then a new coordinator will eventually be elected 
(CONSTRAINT B'). 

The election algorithm is defined by the following four rules. Each node 
follows these rules independently of the others. 

RULE 1: 
A node whose life timer (if the node is active) or election timer (if the node 

is participating in an election but no node has become coordinator) awakes or 
the node is being (re)introduced into the system starts an election becoming a 
candidate. 

RULE 2: 
A candidate node sends timestamped candidate messages to every other 

nodes in the system and waits for acknowledgements. The candidate node lists 
the identifiers of the nodes from whom it received an acknowledgement. 

RULE 3: 
Upon receiving a timestamped candidate message the node sends an 

acknowledgement, and 
a) If the receiving node is a candidate: 

if the timestamp received is less than its own candidate message 
timestamp or equals to it but its identity is greater than that of the 



AS t"U:CTlOS AUiORITIi.\( FOR A .\f(LTlI'RO(TSSOR COSTROLLED DIGITAL EXCflASGt.' 213 

source node then the receiving node drops its candidacy (changing its 
state to election), sets its election timer, and clears its acknowledge­
ment list; 

b) if the receiving node is not a candidate: 
then changes its state to election, sets its election timer. 

RULE 4: 
When the candidate timer awakes the candidate node becomes 

coordinator and starts reorganization (knowing all working nodes from its 
own acknowledgement list). 

Proof 

In order to demonstrate that the election algorithm satisfies 
CONSTRAINT A, let us describe first the state-transition table of node i. 

States of node i: 
a. active, life timer is set; 
b. election, candidate, candidate timer is set, sending timestamped messages, 

waiting for acknowledgement; 
c. election, non-candidate, election timer is set; 
d. coordinator, sending reorganizing messages; 
e. coordinator in active mode (after reorgamzmg the system), sending life 

messages to active nodes; 
Events: 

1. life timer awakes; 
2. candidate message is received with smaller timestamp (or equal but with 

smaller identifier); 
3. candidate message is received with greater timestamp (or equal but with 

greater identifier); 
4. candidate timer awakes; 
5. election timer awakes; 
6. reorganizing message is received; 
7. reorganizing timer awakes. 

~ 1 2 3 
State 

4 5 6 7 

a b c c 
b c b d 
c c c b a 
d c e 
e c 

Note: The event denoted by ! may not occur. 



214 G. S£'\fETH 

We will use the following notation: 

I (x, O)= instant of sending a timestamped candidate message by node x 
I (x, y)= instant of receiving by node y a timestamped candidate message sent 

by node x 
T = time limit for candidate timer 
t = time limit for election timer 
k = upper bound of message delay between any node pairs 
R = time limit for reorganization timer. 

In order to simplify the explanation, temporarily assume that a failing 
node remains inactive forever, thus it will not interfere with any ongoing 
elections, and no new or repaired node will be (re)introduced into the system 
from the instant an election starts until the reorganization of the system after 
the election is completed. 

The lower bound of the candidate timer value may be determined from 
the following constraint: node x, for example, will be the winning candidate; its 
candidate message arrives to node y with maximum time delay k, thus node y 
may send its own (loser) candidate message until time instant I (x, 0) + k, which 
may travel to node x with maximum time delay k, too. Node x may throwaway 
this candidate message if I (x, 0) + k + k < I (x, 0) + Txmin, thus 

Ti>2k 

where TI is the lower bound of the candidate timer value of node i measured by 
its own clock. 

Suppose that node x and node y "simultaneously" become coordinators, 
thus violating CONSTRAINT A, and identity (x) < identity Cv). We will show 
that this situation is impossible. 

Node x becomes coordinator if and only ifit is in state b and event 2 does 
not occur between time instants I (x, 0) and I (x, 0) + 7:xmin (see second line in 
the state-transition table). Similarly, node y becomes coordinator if and only if 
it is in state b and event 2 does not occur between time instants I (y, 0) and 
I (y, 0) + 1):min. Thus 

I (y, x) > I (x, 0) + 7:xmin, (1) 
and 

I (x, y) > I (y, 0) + l}min. (2) 

However, 
I (y, x)::; I (y, 0) + k, (3) 

and 
I (x, y)::; I (x, 0) + k. (4) 



.·IS U.HCTlOS ALGORITII.1f FOR A JfLLTlPROCLSSOR COSTROLLED DIGITAL EXCHASGE 215 

Since Txmin > 2k and Tymin > 2k from (l) and (3): 

1 (y, 0) > 1 (x, 0) + k, 

and from (2) and (4): 

1 (y, 0)<1 (x, O)-k. 

This is clearly a contradiction, thus only one node becomes coordinator. 
The coordinator elected can successfully reorganize the system if and only 

if /2 and /3 between 1 (x, 0) + Tx and 1 (x, 0) + Tx + Rx (/i denotes non­
occurrence of event i). A candidate message may be sent only by such a node, 
which had previously given up its candidacy, but its election timer awakes 
(event 5). Thus 

1 (x, 0) + Txmax + Rxmax < 1 (x, 0) + tymin 
so 

tymin> Txmax + Rxmax. 

Since the nodes measure their timing by their own clocks, ti> T + R. 
However, reorganization involves sending reorganizing messages by the 
coordinator, and since the upper bound of message delay is k, R::::: k must be 
ensured. From this the lower bound of ti = 3k. 

So far it has been assumed that no nodes will be (re)introduced into the 
system until the end of reorganization. If one or more nodes may recover then a 
protection should be provided against two nodes becoming coordinators and 
reorganizators. More precisely, the situations denoted by ! in the state­
transition table must be inhibited. This can be ensured by simply setting the 
clock value of the recovering node to 0 at the instant the node recovers (i.e. the 
timestamp of its candidate message will be 0). 

Nodes are autonomous also at the initialization. No external action is 
needed as nodes will undertake spontaneously an election when the system is 
turned on. 

Failure of the node which is precisely the one being elected by the other 
nodes as coordinator is not catastrophic; protection against infinite waiting is 
provided by the election timers; the election phase will only be longer than for a 
failure-free situation. 

At any time, several nodes in the system may fail, so the coordinator at no 
time can know which nodes are active. This means that if the coordinator has 
some actions that it wishes a certain set of active nodes to perform, it cannot 
simply issue the necessary commands, instead it must use a two phase commit 
protocol to have the actions performed (or ignored) by all nodes in the set [3]. 



216 G. Ni;.\[ETH 

References 

1. NEMETH, G.: "Architectural problems of ISDN", Computer Network Usage: Recent 
Experiences (North Holland, 1986) 231--':239. 

2. NEMETH, G.: "Multimicroprocessor control structures for small capacity electronic digital 
exchanges", 29. 1nl. Wiss. Kol!. (Ilmenau, 1984), Vo!. 2,187-190. 

3. GARCIA-Mou1\A, H.: "Elections in a Distributed Computing System", IEEE Trans. on 
Computers, Vo!. C-31, No. I, January 1982.48-59. 

4. LAMPORT, L.: "Time, Clocks. and the Ordering of Events in a Distributed System", Comm. 
ACM. 21, 558-565 (1978) 

Dr. Gflbor NEMETH H-1521 Budapest 


