
NEW METHODS FOR PSEUDOEXHAUSTIVE 
TESTING 

E. SELENYI 

Department of Measurement and Instrumentation Engineering, 
Technical University, H-1521 Budapest 

Received by June 5, 1986 
Presented by Prof. Or. L. Schnell 

Abstract 

Pseudoexhaustive testing of combinational circuits has become of great importance 
recently. These methods are keeping most of the benefits of the classical exhaustive testing which 
check every combination of the input signals, but they need a considerably shorter sequence of 
test patterns. In this paper we give a survey of pseudoexhaustive testing. Two new code 
construction methods are presented: a systematic procedure to generate an effective exhaustive 
code for every two dimensional subspace of the inputs; and an extension of the codes from the k 
dimensional space to k + 1. The efficiency of the new methods is compared to the ones described 
in the literature. 

Introduction 

Logic testing of digital circuits has always been of central interest because 
of the high reliability required. Testing of LSI and VLSI circuits however, is 
getting increasingly difficult as both circuits density and the manufactured 
quantity increase. 

Traditional test techniques require the derivation of the input test sets 
with the associated output responses based on a fault model of the device under 
test, so, that the faults contained by the model could be detected (or perhaps 
diagnosed). These test sets are then programmed into an automatic tester, 
which applies them to the unit under test and checks the responses. There are a 
number of difficulties with this approach [1]. 

1) A fault model is required. In LSI and VLSI circuits the classical 
assumption that only single stuck-at-faults have to be considered may no 
longer be valid. More complex models substantially increases the difficulty of 
pattern generation. 

2) Pattern generation is required. Automatic test pattern generation is 
expensive and does not provide sufficiently high fault coverage. Manual 
methods are restricted in complexity and they considerably increase the 
production cycle. 

3) An expensive tester is needed. 
Much effort has been made all over the world to avoid these problems. To 

refine the classical method new and more effective test generating algorithms 
have been developed, more productive testers have been designed, etc. 



12 E. SELENYl 

Besides these advances two kinds of new approaches have been worked 
out recently. One of them is to design circuits to facilitate testing. This means 
structural restrictions for the designer, but testing of such circuits is simple. A 
typical example of this method is LSSD. 

The other approach named pseudoexhaustive testing has been worked 
out by E. J. McCluskey et al. This paper contains a survey of the results in 
pseudoexhaustive testing, and besides, some new code construction methods 
will be introduced worked out by the author. 

Pseudoexhaustive testing 

The traditional exhaustive test of a combinational circuit includes every 
combination of the input set. thus except for those bridging-faults that lead to 
an asynchronous sequential circuit, the unit is completely tested without a fault 
model. 

The disadvantage of this method is that for n inputs 2n test vectors are 
required. In practice only circuits realized by ROM need this kind of testing; 
the gate-structured circuits can be exhaustively tested by a considerably 
shorter sequence of test patterns. This simplification can be achieved by 
partitioning the circuit into subcircuits which are then separately tested 
exhaustively. 

Figure 1 shows a circuit, where FI, F2 and F3 are arbitrarily realized 
logical functions. The circuit has six inputs, so its exhaustive test would contain 
64 test vectors. In this case, however the number of the test vectors can be 
reduced, as each output depends only on 4 of the inputs. Thus, except for the 
bridging of the outputs, both the FI-F2 and the F1-F3 subcircuits can be 
tested with 16-16 vectors. By an appropriate choice of input vectors (e.g. a=e, 

o-----~ 

b--------l 

c 
d 

e--------i 

x 

y 

Fig. 1 

obcdef 

'--; 0 0 ~--i 

x=glO 11 x: 
v _11 01 I 

x=g 11 11 I __ 1-_-1 __ ...1 

o 01 11 1 
o 11 11 0 
, 0: 9 =0:0 , 

, , ~ 10 0 
o 0 1 --~, , 

1 
o '19=,1' 0 
, 01 : 0 , 

'L __ JO 0 



PSEUDOEXHAUSTIVE TESTING 13 

b = [) these two sequences can be applied concurrently, thus the whole circuit 
can be tested within 16 steps. 

The test sequence can be further reduced by the serial decomposition of 
F1-F2 (FI-F3). Four test vectors and the sensitization of g through F2 are 
sufficient for testing 1'1, F2 and F3, both having 3 inputs to be tested with 8 
vectors. H the logic functions of FI, F2, F3 are known, surely some of the first 
four vectors can be applied concurrently with some of the second eight ones, 
thus the test would contain less then 12 steps. 

With this decomposition method we can 
- check every single stuck-at-fault in the circuit, 

check every multiple stuck-at-fault and bridging-fault within the modules, 
but 

- we might not detect the multiple stuck-at- and bridging-faults between the 
modules. 

Methods for an adequate decomposition are described in the literature [lJ, [3J, 
[8J, [11]. As we have shown in the example, the decomposition of the gate
structured circuit led to a testing, which was not exhaustive on the total n 
dimensional space, but only on its k l' k2 , . .. km - not necessarily disjoint 
subspaces. 

It is possible to find the proper kcsubspaces by a thorough examination 
of any concrete circuit, but usually it is much easier to determine the maximum 
size (kmax = k) of them, hence a test being exhaustive for all k-subspaces of the n 
dimensional space of inputs can be used. 

The problem in general is solved by the <n, k, T) pseudo exhaustive codes. 
These are code sets containing T f)-dimensional vectors which exhaustively 
cover every k-subspace. 

The pseudoexhaustive codes can be efficiently used also for testing 
registers and memories, where the faults are usually caused by cells stuck 
together according to some logic function. RAM tests, which check every pair 
of cells in all four combinations are widely used. 

Psemioexnal1stive codes 

Up to now no general solution exists for finding an optimal <n, k, T) 
code. An optimal solution means practically the minimum number (T) of 
necessary test vectors for given nand k. Pseudoexhaustive codes described in 
the literature are not aimed to be optimal, only to be more or less effective. In 
the following, we will describe some of the interesting code constructions. 



14 E. SELENYI 

Optimal code for k = n - 1 [4J 

Code construction: every combination of the k=n-1 bits are realized in 
T = 2k rows. The nth column is calculated as the mod2 sum of the other columns 
(see Fig. 2). 

5, 52 5:J = 5, El 52 

r---, 
I 0 1 I 1 
I 0 0 I 0 ) 

:10: 1 V=<3,2,4> 

I 1 1 I 0 L ___ ...1 

Fig. 2 

Optimal code for k = 2 [16J 

In case of k = 2 the all-zero code (vo) and the all-one code (v t ) contain the 
combinations 00 and 11 for each pair of bits. To get the combinations 01 and 
10, any two columns must be unordered (a and b binary vectors are unordered, 
if there exists such an ith bit position, that ai =0 and bi = 1, and a lh one, that 
aj= 1 and bj=O). 

An effective way of creating unordered codes is to choose codes of the 
same weight. 

Thus the optimal code construction (see Fig. 3) is the following: Let the 
first element of any Si column code be o. The next T - 1 elements (T - 1 being an 
odd number) are forming a code of weight T/2. 

o 0 
o 0 

1 1 0 0 0 1 1 1 
~~~~~~~~ 1 
1 1 0 1 1 0 0 1 

1 1 0 1 1 0 1 0 1 0 
1 1 1 0 1 1 0 1 0 0 

o 1 

1 0 

Fig. 3 

V=<1O,2,6) 

f h I (T -1) h· . h The maximum number 0 suc co umns llrnax = T/2 ,t IS IS t e 

maximum length of the codes. This method provides the 11 combinations 
without containing Vt. 

Systematic code for k = 2 

Code construction: Let the ith column code be 



PSEUDOEXHAUSTIVE TESTING 15 

where < i) is the binary expression for i, < i) is the l' s complement of < i) (See 
Fig. 4.). Having T(Tbeing an even number) test vectors, nmax = 2T/2 -1 bits can 
be coded. 

5 i 50 5, 52 53 

0 0 0 0 0 
j 

0 0 1 1 i 
; 0 1 0 1 

1 1 1 1 1 
! 

1 1 0 0 
1 0 1 1 

Fig. 4 

Constant weight codes [2J 

Code construction: Let V= <n, k, 7) be a code containing every vector Vi 

of weight(s) w such, that w=c mod (n-k+ 1) for a constant c, where 
o ~ c ~ n - k. For k = n -1 this method provides the optimal code. I.e. in this 
case w = c mod2, if c = 0, then all codes of even weights, if c = 1, then all codes of 
odd weights are included in V. 

An example for k = 2: 

Let c=O, 
Let c 1, 

then 
then 

Let c = 2, then 

w 1 =0, 
W 1 = 1, 
w=2 

Let c=n-2, then w=n-2. 

w2 =n-1 
w2 =n 

The best cases of these are when c = ° or c = 1. If c ='0, then Vincludes the 
all-zero vector, and all the vectors containing only one zero. In this case T= n 
+ 1, which is considerably worse than the optimal solution. For k = 3 the best 
choice is to take all the codes containing a single zero, and all the codes 
containing single one (Wl = 1, W2 =n-1). 

The number of the necessary vectors T = 2k. (See table 1.) 
We finish the survey of the code construction methods described in the 

literature by mentioning [6J, where cyclic codes are used in an interesting way 
to provide pseudoexhaustive codes. This method is not more effective than 
others mentioned above for k ~ 3, but for k> 3 some efficient solutions were 
provided. The algorithm is rather complex, and (at least up to now) the value of 
n cannot be arbitrary. 

Effective systematic code for k = 2 

Let us consider a Vo = <no, 2, To) pseudoexhaustive code! A code for 
arbitrary nand k = 2 can be obtained from Vo by the following algorithm: Let 
us remove from Vo the all-zero code and the all-one code (if they are included): 



16 E. SELENYI 

V~=Vo-{Vo, VI}' Let us denote the columns of V~ with So'·· ,SnO l' 

respectively. To construct the ith column code in the n dimensional space, let us 
rewrite i in the number system based on no: 

q 

i = '" a . nP
' L... P 0' 

p=O 

Let s; <saq> <saq - I > ... <sao>; OS:;is:;n-l. 
Let us complete the code determined by the s; columns with the vo, VI 

vectors (if they were removed before). 
Theorem 1. The resulting code is a V= <n, 2, 1) pseudoexhaustive code. 
Proof: If i =f j, then their forms in the number system based on no will differ 

from each other in at least one position. Let us denote this position with p. Thus 
the p segment will contain every combination in s; and sj, provided by V~. 

Considering also the probably previously removed Vo and VI codes, the 
resulting V provides every combination included in Vo for any two bits. As Vo 
exhaustively covers every k = 2 subspace, so does V, too. Q.E.D. 

500 So, 502 510 5" 5'2 520 5 21 522 SIJ 

0 0 0 0 0 0 0 0 0 0 r-------, 
0 1 ~ I 0 1 1 I 0 

Vo I 1 0 1 I 1 0 1 0 1 Sal 
I 1 1 0 I 1 0 1 0 t L ______ .J 

0 0 0 1 1 ~ 
0 0 0 1 1 1 ~al 

0 0 0 y 

Fig. 5 

This method is tendentiously optimal, if the optimal code set Vo = <3,2, 
4> is chosen initially. In this case using T = 3t T 1 (t being an integer) vectors the 
maximum length of the code vectors fl max = 3(T - I)i

3
. This method is getting 

more and more effective as T increases, compared to the systematic code for 
k = 2 described in the literature. An example is shown in Fig. 5. 

Extending pseudoexitaustive codes from k to (k + 1) 

Lemma 1. Any projection (V~+ 1) of a pseudoexhaustive code ~ = <n, k, 
1), n > k, onto a k + 1 dimensional subspace contains at least one vector of any 
pair of one Hamming distance. 



PSEUDOEXHAUSTlVE TESTING 17 

Proof: Suppose, that V~ + 1 contains none of the following two vectors of 
one Hamming distance: 

Removing the ith bit, the resulting projection V~ does not contain the 
combination 

thus ~ is not covering exhaustively every k-subspace, which is a contradiction. 
Q.E.D. 

Lemma 2. If v~+ 1 includes codes of both even and odd weights, then it 
contains also codes of one Hamming distance. 

Proof: According to Lemma 1 at least one of any two codes of one 
Hamming distance are included in V~ + 1. If there are no two codes of one 
Hamming distance in V~ + 1, then it contains only either codes of odd weights or 
codes of even weights, which is a contradiction. Q.E.D. 

Theorem 2. Let ~ = <n, k, 7) be a pseudoexhaustive code including Vo 
and Ok + 1 = <n, k + 1, t> such a code set, that every projection of Ok + 1 on a k + 1 
space contains at least one code of odd weight, then 

~+ 1 =(~EB ~)U(~EBOk+ 1)' 

where ~ + 1 = < n, k + 1, ~ + 1> is a pseudoexhaustive code set. (The mod2 
operation between code sets has to be executed between pairs of codes.) 

Proof: The projection of ~ onto the k + I-space will always contain a 
code of even weight (the projection of vo). Therefore the following two cases 
must be considered: 

a) All elements of V~ + 1 are of even weights. Then according to Lemma 1 
every code of even weight is contained in V~+ I and because of ~EB~, also in 
vt! i· As O~! i projected on the same space contains at least one code of odd 
weight, V~+IEBO~!i contains every code of odd weight. 

b) V~ + I includes codes of both even and odd weights. In this case 
according to Lemma 2 there are two codes of one Hamming distance in it: 

Suppose, that V~! i doesn't contain the code vp, i.e. it isn't exhaustive for k + 1 
then as V~ + I EB V~ + 1 is included in V~! L V~ + I contains neither the code Vi' I 
= V"I EBvp, nor V y2 = va2 EBvp, where vrl and vy2 are codes of one Hamming 
distance. This contradicts Lemma 1. Q.E.D. 

2 Periodica Polytechnica Electrical Eng. 31/1 2 



18 E. SELENYI 

The efficiency of the recoursive extension for k depends basically on the 
construction of Ok+ l' If k is an even number, then Ok+ I consists only of one 
code: VI' For the case of odd k the optimal solution (the minimum number of 
elements) has not been found yet. 

Theorem 3. If k is an even number and from the fact that Vi is an element of 
Vk comes that so is Vi (Vk contains only pairs of inverted codes) then the code set 
Vk + 1 = Vk EB Vk is exhaustive for k + 1. 

Proof: Any projection of Vk onto the k + 1 dimensional space contains 
codes of both odd and even weights (because of the inverted pairs), therefore the 
proof of Theorem 2b. can be applied. Q.E.D. 

Effective code constructions for k = 3 

Several V3 code sets can be constructed by applying the extension method 
on different V2 code sets. In the following we are going to show two procedures. 

K 1 construction 

Let V2 = <n, 2, T2 ) be the systematic code containing columns of the form 
Si = O<i) 1 <i). This code set consists of inverted pairs of codes, thus the 
construction according to Theorem 3 can be used. Applying the following 
equalities: 

the number of elements in V3 = <n, 3, T3) will be much less then T~/2: 

T3 ::;;2+2 (T~2) 
Making use of the equation between T2 and n, the number of the needed 

test vectors for given n 
T3 ::;;2+ rIdnl+ fldnY 

The values of T3 for small values of n are given in table 1. 

K2 construction 



PSEUDOEXHAUSTIVE TESTING 19 

The derivation of this formula is omitted here. There is no explicit 
equation between nand T3 , but for small values of n, table 1 contains the 
counted results. 

Comparison of the codes for k = 3 

In table 1 we compared the effectiveness of the two new methods to the 

Table 1 

n 
KI K2 K3 

3 8 
4 8 8 
5 10 
6 13 12 
7 14 
8 14 16 
9 18 

10 18 20 
11 22 
12 24 
16 22 32 
20 24 40 
27 54 
32 32 64 
35 31 70 
64 44 128 
70 39 140 

constant weight method (K3). It can be seen that the systematic-like K 1 
construction is better for large values of n, n> 11, the non-systematic K2 
construction is better than K3 for n> 12, and the difference grows rapidly by 
increasing the value of n. 

References 

1. MCCLUSKEY, E. J.-BoZORGUI-NESBAT, S.: Design for Autonomous Test. IEEE. Trans. 
Comput. vol. C-30, No. 11. 866-875 (1981). 

2. TANG, D. T.-Woo, L. S.: Exhaustive Test Pattern Generation with Constant Weight Vectors. 
IEEE Trans. Comput. vol. C-32., No. 12. 1145-1150 (1983). 

3. McCLUSKEY, E. J.: Verification Testing - A Pseudoexhaustive Test Technique. IEEE Trans. 
Comput. vol. C-33, No. 6 (1984). 

4. MCCLUSKEY, E. J.: Verification Testing. 19th Annual Design Automation Conference. 495-
500, Las Vegas, Nevada, June 14-16, 1982. 

2* 



20 E. SELENYI 

5. MCCLUSKEY, E. J.: Exhaustive and Pseudo-Exhaustive Test. International Test Conference' 
83. Tutorial on Built-in Test. Philadelphia, Pennsylvania, Oct. 17. 1983. 

6. TANG, D. T.-CHEN, C. L.: Logic Test Pattern Generation Using Linear Codes. IEEE Trans. 
Comput. vo!. C-33, No. 9., 845-849 (1984). 

7. TANG, D. T.-CHEN, C. L.: Logic Test Pattern Generation Using Linear Codes. Proc. 13th 
Annual Symposium on Fault-Tolerant Computing. 222-226 Milan. Italy, June 1983. 

8. ARCHAMBEAU, E. C.-MCCLUSKEY, E. J.: Fault Coverage of Pseudo-Exhaustive Testing. Proc. 
14th Annual Int. Symp. Fault Tolerant Computing. 141-145. Orlando, FL. June 20-22, 
1981. 

10. WANG, L. T.: A New Condensed Linear Feedback Shift Register Design for VLSI/System 
Testing. Cent er for Reliable Computing Technical Report, Computer System Lab., 
Stanford University. 1984. 

11. HAssAN, S. Z.-MCCLUSKEY, E. J.: Pseudo-Exhaustive Testing of Sequential Machines Using 
Signature Analysis. Proc. 14th Annual Int. Symp. Fault Tolerant Computing, 360-365. 
Orlando, FL. June 20-22, 1984. 

12. BRAZILAI, Z.-COPPERSMITH, D.-RoSENBERG, A.: Exhaustive Generation of Bit Patterns with 
applications to VLSI Self-Testing. IEEE Trans. Comput. vo!. C-32, 190-194 (1983). 

13. BARDELL, P. H.-McANNEY, W. H.: A View from the Trenches: Production Testing of a 
Family of VLSI M ultichip Modules. Proc. 11th Annual Int. Symp. Fault-Tolerant 
Computing. Portland, ME. 281-283, June 24-26, 1981. 

14. ICHIKAWA, M.: Constant Weight Code Generators. Center for Reliable Computing 
Technical Report, Computer System Lab., Stanford University. June 1982. 

15. AGARWAL, V. K.-FuNG, A. S.: Multiple Fault Testing of Large Scale Circuits by Single Fault 
Test Sets. IEEE Trans. Comput. vo!. C-30, 855-865 (1981). 

16. CHANDRA, A. K.-Kou, L. T.-MARKOWSKY, G.: On Sets of Boolean n-Vectors with All k
Projections Surjective. IBM Res. Rep. RC-8936. July 1981. 

Dr. Endre SELENYI H-1521 Budapest 


