
SIDE-EFFECT FAULT MODEL 
FOR TESTING VLSI CIRCUITS 

P. GARTNER 

Department of Electronic Devices, 
Technical University, H-1521 Budapest 

Received June 5, 1986 
Presented by Prof. Dr. K. Tarnay 

Abstract 

The paper presents a new fault model for testing sequential digital circuits, preferably 
processor-like systems. The concept is based upon the functional specification consisting of 
instructions. Correct operation of the system is tested by checking not only correct execution of 
the instructions but their side-effects, as well. Testing for side-effects can be carried out by 
executing instruction-pairs. 

Tests for highly complex integrated circuits are often generated on the 
basis of their functional description [lJ, [2J, [3]. It is carried out with the 
assumption of various fault models, or even without them. The paper presents a 
new fault model which provides general strategy for generating functional 
(behavioural) tests. 

The problem is approached from the event-oriented structure of the 
functional specification. The set of input-events is defined as elementary events 
consisting of only one single change at one of the inputs and/or as complex 
events comprising a given sequence of certain input vectors. 

The specification maps the elements of this set into events defined upon 
the outputs and internal storage elements, only the final modified state has to 
be - and usually is only - specified while the others remain unchanged. The 
main question of the behavioural test is: 

"Does the network perform as it is prescribed?" i.e. whether the input 
event results in the specified changes. An answer to this question is necessary 
but not sufficient for the proper test. To be sufficient, also another question has 
to be answered: "Does the result comprise anything not prescribed?" - that is 
whether there is any side-effect present. (Considerations will be restricted to 
side-effects upon the internal storage elements because primary outputs are 
directly observable and so detection of their faulty behaviour is trivial.) 

In accordance with the Mealy model the output Y and the internal state Z 
of an automaton at time t is: 

yt=).(x t, Zt-1) 

zt = b(Xt, zt 1) 



22 P. GARTNER 

If there are p internal memory elements then Z can be detailed as a binary 
vector of length p: 

Z=Z1,Z2,Z3" .zp 

The change of the internal memory elements with respect to the previous 
state is: 

Llt =Zt EBzt
- 1 

The next-state function b of a faulty automaton is changed to b* and then 
the state of the memory elements is: 

zt* =b*(Xt, Zt-1) 
and their change can be written as 

Ll t* =zt*EBzt- 1 

The presence of fault automatically renders Llt*::j:. Llt. If, in addition, Llt 
c Ll t* then this is a pure side-effect and the set of the storage elements involved 
can be expressed as 

Ll S = Llt*\Llt 

where \ denotes subtraction of sets. As a minimum, Ll S may comprise one single 
bit which is faultily set/reset. 

The side-effect fault model can be applied to any network provided its 
functional description is given, but most favourably it is applied to processor
like networks where data and control logic separate well. Here functional 
specification mostly consists of definition of instructions and the test is to check 
their correct execution. (For the sake of simplicity hardware control inputs like 
interrupt or bus request are omitted now but the method can easily be extended 
to them, too.) 

According to the side-effect fault model, testing is carried out in two steps. 
First, the correct execution of the instruction under test is checked and then the 
lack of side-effects. In principle, correct execution can be checked on the basis of 
the specification without difficulties. Checking the side-effects is not as simple 
because it requires checking of all internal storage elements. Concerning VLSI 
circuits, data published for users do not usually contain information on all 
internal storage elements. Only those available for users are known and a part 
of them is easily accessible. (As to processors, only registers which can be read 
out and written to by one single instruction are considered easily accessible.) 
The existence and function of some not-known storage elements might be 
reverse-engineered but by no means all of them. Therefore, another method of 
checking side-effects is proposed. 

If the execution of an instruction I j induces a side-effect Sj - which is an 
unwanted change of the state of the internal storage elements - then there 
exists at least one instruction Ik that, in the presence of Sj' can not be executed 
correctly. Consequently side-effects can be detected in such a way that after the 



MODEL FOR TESTING VLSI CIRCUITS 23 

execution of a given instruction another one is executed, too, and the result is 
checked. Then this will be carried out for every possible pair of instructions. 
Hence the structure of such a side-effect detecting program is: 

(1) 

where L denotes cyclic execution of instructions. 
One question, however, arises: How can a fault be found if the side-effect 

Sj of the instruction I j will only be detected by the second subsequent 
instruction I p in a sequence of I i kIp. The answer is as follows: The test 
sequence (I) contains each instruction-pair Ijlk - with lip among them. If 
none of these detects the side-effect, then the only possibility is that the 
execution of Ij induces a side-effect Si which does not influence the execution of 
any instruction. Then I b while performing correctly, will cause Si to change into 
S'J which, however, can already be detected by I p. This is a trilateral interaction 
and when Si comes .into being the system enters a non-specified state. (The 
number of possible states of the system has increased by one!) Presuming that 
no design error exists, it is not probable that some manufacturing failure (s) 
would produce a fault which only appears in form of a trilateral interaction. 

The complexity of a test program constructed with regard to the above 
strategy can be expressed in terms of the number of instructions Ni: 

ITI=O(Nj+N;) 

The first term stands for the tests checking the correct execution of the 
instructions, while the second one refers to the instruction-pairs of the sequence 
(1). Of both terms the latter dominates - O(N;) and so the same complexity 
is obtained as was by Thatte and Abraham, but by means of a different (and 
simpler) reasoning [2]. 

When testing the execution of instructions the problem of operands has 
to be mentioned. This leads to the problem oftesting the data-logic (data paths, 
registers and data modifying units). As to data paths and registers, the literature 
unanimously recommends the so-called data path checking patterns 0101 ... , 
0011 ... , etc. (checkerboards). 

They check the individual bits of the data path and whether there is any 
short or coupling between them. If this latter is regarded as a side-effect, then it 
is easily realized that this method is in accordance with the side-effect fault 
model. As to the ALU, it is a combinational network. Any sensible test for it can 
only be generated on the basis of structural information. 



24 P. GARTNER 

References 

1. YOUNG, 1. H.: "Functional Completeness as a Criterion for Digital Testing". Proceedings of 
the IEEE Test Conference, Cherry Hill, 81-84 (1977). 

2. THATTE, S. M.-ABRAHAM, 1. A.: "Test Generation for Microprocessors". IEEE Trans. 
Comput., vo!. C-29., 429-441, June 1980. 

3. BELLON, C. et al.: "Automatic Generation of Microprocessor Test Programs". Proceedings of 
the IEEE 19th Design Automation Conference, 566-573 (1982). 

Dr. Peter GARTNER H-1521 Budapest 


