
TESTING OF MICROPROCESSORS 

A. PAT ARICZA 

Department of Measurement and Instrument Engineering, 
Technical University, H-1521 Budapest 

Received June 5, 1986 
Presented by Prof. Dr. L. Schnell 

Abstract 

With the growing use of the microprocessors the problematics of testing become more and 
more important for the reliability of the instrumentation. The paper gives a survey of the usual 
strategies and methods for CPU testing in microprocessor controlled equipment. The effects of 
the state-of-the-art field service methods on the self-test technology are discussed. Description of 
a new algorithm based on information compression is given together with some related 
realization experiences. 

Introduction 

The advent of the microprocessors caused a radical change in the 
architecture of the measurement equipment. The majority of the control and 
data processing functions are realized by the microcomputer. The earlier 
strong correlation between the function and the structure has become loose. 
The complexity of the realized control sequences increases radically with the 
use of sophisticated algorithms, the substitution of analog data processing with 
digital etc. 

The functional complexity increases the ratio of the possible difficult-to
diagnose faults and therefore the cost and efforts needed to the fault 
localization and repair. Simultaneously, the wide-spread application of the 
microprocessor controlled instrumentation requires a certain reliability 
growth. 

The solution of this conflict is based upon the (at least partially) self
testing device-building principle. A self-testing system incorporates the 
capability of checking its functionality without external resources, using the 
built-in intelligence. 

The widely used field service methods are based upon the extension of the 
error detecting self-test to a diagnostic level [1-3]. 

3* 



36 A. PATARICZA 

The main problems related to CPU testing 

Usually, the microprocessor controlled equipment incorporates only a 
single intelligent device, the central processing unit (CPU). Thus, the CPU test 
becomes an essential problem in the self-test process, because the test of other 
components in the system uses the CPU as resource. Despite of its fundamental 
importance there are essential problems related to the CPU testing especially 
in the user environment: 

- No unambiguous statistical data are available to the user related to 
the reliability and defects of the CPU. 

- The efficiency of the classical, gate- and flip-flop level methods is 
strictly limited due to the unknown internal structure of the CPU, the 
order of the problem, the poor controllability and observability and 
the dubious validity of the generally used stuck-at type fault model. 

- For the manufacturers the test-friendliness in user environment is no 
design criterion (with the exception of some newly developed CPU's 
[4J). 

Strategies for CPU test 

Due to the difficulties mentioned above, different approaches exist for the 
CPU testing problem. 

- The "non-testing" strategy assumes high reliability ofthe CPU and the 
easy-detectable manifestation of its faults (eg. catastrophic program 
sequence distortion). The main inconvenience of this method is the 
uncertainty in the existence of faults (eg. pattern sensitivity etc.). 
In random-testing we assume that the controlled execution of any, 
sufficiently long program exposes with high probability the potential 
faults. The advantage of the method is that it requires no fault 
modelling and test-vector evaluation. The disadvantage is the 
insufficient fault coverage in the case of real program length and run
time. 

- By heuristic instruction-level testing the proper execution of all 
elements in the instruction set of the CPU is checked. Some 
instructions (the kernel of the test) are assumed to be fault-free. The 
other instructions are examined in an increasing "complexity-order" 
using only instructions previously classified as "good" (belonging to 
the kernel or pretested). 
The algorithmic methods give solution for a processor-category 
starting from a generalized model of the CPU and its faults. 

In the next sections this important strategy will be dealt with in details. 



TESTING OF MICROPROCESSORS 37 

Algorithmic CPU test 

The high level description and modelling of the CPU elements became 
more and more necessary due to the difficulties mentioned above. First 
fundamental results in this fieid were obtained by Thatte and Abraham [5]. 

Their method has the following features: 
- The data flow mechanism ofthe CPU (register set, the effect of transfer 

and branch type instructions causing data flow) is modelled by a so
called S-graph, evaluated from the user level specification. 
Functional fault models and test algorithms were developed for the 
subset of the CPU structure and operations described above. The 
design criterion was the high fault coverage. The fault diagnosis was 
not a design goal. 

- The model is independent from the testing environment, the 
mechanisms for test generation and response evaluation influence it 
only implicitly. 

- The data manipulation (eg. arithmetical, logical) instructions are not 
included in the testing. 

The faulty functions in the model could be: 
- register decoding 
- instruction decoding 
- data storage and transfer. 

Test of register decoding 

The fault model for the register decoding is: 
no register selection for some register(s) 

- instead of the addressed register another one is selected, 
- in addition to the addressed register some other(s) is selected. 
The register set treated functionally is an embedded RAM, so its test can 

be based on the well-known memory test algorithms, modified due to 
the implicit addressing of the registers; 

- the indirect accessibility of some registers (their read and/or write can 
be accomplished only through other registers ego the I interrupt 
register of Z80) 
the autonom manipulations on some registers by the CPU hardware 
(eg. program counter) [6J). 

The realisation of the usual memory test algorithms requires only small 
amount of program space due to the regularity of the structure and of the 
pattern to generate. In the case of CPU test this regularity can not be utilised 



38 A. PATARICZA 

for statical program length reduction (eg. by cycle organisation) primarily due 
to the implicit addressing. Accordingly, the register test is statically long (eg. for 
the Z80 CPU 1.5 Kbytes). 

Test of the instruction decoding 

The fault model for the instruction decoding is: 
- no instruction execution, 
- instead of the selected instruction some other is executed, 
- in addition to the selected instruction some other is executed. 
The fault model described above seems to be simple, but the testing of the 

control section performing the instruction decoding is significantly more 
difficult than that of the register decoding. The cause of this complexity is the 
indirect observability of the control signals. Accordingly, the test generation 
algorithm is difficult to survey and handle. The complexity is well
characterized by the fact that the length of the test program segment for the 
instruction decoding of an 8 bit microprocessor (developed by the authors of 
[5J) is 8 Kbyte long. Therefore the rationalization of the testing of the 
instruction decoding is subject of intensive research [7-11]. 

The remarkable approach in [7J assumes essentially a microprogrammed 
CPU structure, but it is adaptable for microprocessors with random logic 
control section. An instruction is modelled as a series of microinstructions, and 
the micro instructions are sets of parallel executed microorders. This is based 
on that physical correspondence, that an instruction is a series of different 
machine states and during any machine state the changes in internal control 
signals are performed simultaneously. 

The fault model for the control section from [7J is 
one or more microinstructions are inactive, 
one or more microorders or 

- a microinstruction is additionally active. 
The fault detection algorithm for the above described fault model is 

significantly simpler than that of the S-graph model and it provides a good fault 
coverage. 

The fault model of the data storage and -transfer in the S-graph model 
contains the following faults: 

- stuck- at 0 or 1 faults in any register(s) or on the links between them 
- OR or AND type coupling between bits of a register or of a link. The 

fault detection algorithm is quite simple (a test vector series must be 
transferred through every input-output path). 

We may conclude that the main advantage of the S-graph type methods is 
the possibility for automatic test-pattern generation from the user level 
description of the CPU. 



TESTING OF MICROPROCESSORS 39 

The disadvantage of this methods are: 
- the great redundancy caused by the generalization (the CPU is 

modelled as a black box with functional description, but without any 
structural information); 

- too long test sequences, resulting from the resource minimalization 
principle; 

- some functions (arithmetical-logical unit, interrupt system) are not 
included in the scope of the method. 

The specification of CPU (self-) test programs 

For the implementation as self-test the usual algorithms must be 
significantly modified to assure protection for catastrophic program failures 
and reliable result comparison. 

The test algorithms and their realizations are essentially influenced by 
[IIJ 

the resources allowed for the test, 
- the method of the test response evaluation. 
Historically, the CPU testing is evaluated from the checking technology 

of the main frames in computing centers. This method is based upon the 
execution of the self-test routines on the potentially faulty computer, initiated 
by the operator. The field service repairs the wrong CPU function with board 
or component exchange upon the basis of the error messages produced by the 
self-test so the main criteria for this tests are the safe execution and the good 
diagnostics. 

The set of the resources used by the test without previous checking (the 
kernel of the test) is usually minimized in correspondence to the above 
mentioned criteria, because 

- their fault and the faults of the CPU are mostly inseparable; 
- they (possibly) increase the probability of a catastrophic distorted, 

incontrollable program execution (eg. a fatal program execution error 
caused by a return from subroutine to an address stored in a faulty 
RAM). 

Most algorithms in the literature are based upon the above mentioned 
criteria without revision and therefore upon the kernel-minimization principle. 
The kernel of the test contains usually some basic functions of the CPU, a part 
of the test ROM and the CPU-ROM link. The extension of the kernel means 
the addition of the subsequently tested CPU resources (eg. instructions, 
registers) to the kernel. 

A fatal error in the program execution is relative easy to detect (eg. by 
timeout checks, by the checking of the control sequences or by the absence of 



40 A. PATARICZA 

the "good CPU" signal as result etc.). Therefore the minimization principle is 
mainly implied by the requirement for diagnosis. 

For the self test of microprocessor based equipment usually there is no 
need for diagnosis, its goal is only fault detection. For this application field the 
fault diagnosis can be executed easily even in the case of the most primitive field 
service technology (eg. by the exchange of the "dubious" CPU to a known
good one). In the case of a modern field service technology the additional 
resources for the fault localization (eg. diagnostic program and other hardware 
resources etc.) are provided fault-free by a service instrument. The absence of 
the requirement for diagnosis provides a good possibility for the simplification 
of the algorithms. Therefore, the essential revision of the previous algorithms 
became reasonable for the author. 

F or this case the use of arbitrary - even potentially faulty - resource is 
allowed, if 

- it causes no significant increase in the probability of fatal program 
execution errors, 
the error coverage in the evaluation of the test responses is sufficiently 
high. 

The evaluation of the test responses 

For the evaluation of the test responses the observability of the results 
generated in the CPU registers and their comparison with the references must 
be assured. 

The possibilities for response evaluation are: 
External error detection, in which case the comparisons between the 
responses and the reference values are executed by a special response
evaluator hardware unit. This hardware redundancy results in a 
simplification of the testprogram (by the absence of the programmed 
evaluation of the gojnogo syndrome) and in some increase of the 
reliability. 

In the case of internal error detection the test responses are evaluated by 
the test program itself. The reliability of the test is essentially determined 
by this phase, therefore the resources used for it must be thoroughgo
ingly pretested. 

The possibilities to assure observability for the test responses are: 
- Control-sensitization, by which the program execution-sequence is 

modified by the results (typically by means of result-reference 
comparison and a corresponding conditional branch execution) 

- Data-sensitization, in which case the results (or the result-reference 
differences) are saved in each test phase and the test evaluation is 
executed as the final phase of the test on the stored data. 



TESTING OF MICROPROCESSORS 41 

In microprocessor controlled equipment the usually applied error 
diagnosis method is internal, on account of its smaller cost. The usual 
realizations are control-sensitized, resulting in smaller requirements is 
resources. (For data sensitization storing of the results until the response 
evaluation must be solved.) 

The main characteristics of the realized self-test program 

The CPU self-test program developed by the author is an element from 
the self-test system of the MMT Microprocessor Application System. Its basic 
specification was essentially similar to the usual self-test criterion system for 
microprocessor controlled equipment. 

- The test must assure a fault coverage as good as possible. 
- Its goal is only fault detection. No fault diagnosis is required. 
- The test runs directly after power-on, therefore the run-time is in wide 

range unlimited. 
- In the absence of external checking hardware it works upon the basis 

of internal error detection. 
- The program must be as short as possible. 
The good fault coverage can be assured only by an algorithmic method. 
The absence of requirements for diagnosis and - as described earlier -

the addition of resources allows the use of compressed data sensitization. The 
principle of this method is the storage of the generated partial result series in a 
compressed form instead of the full extent. The partial results are compressed 
continuously at the generation phases. The final result is evaluated in the 
final phase of the test. In the realized program the information is compressed 
by a 16 bit, parallel software signature analyzer [12]. Therefore, the required 
reference storage is - instead of several hundred bytes only 16 bit. The 
reference value is generated by a program execution on a known-good 
reference system. and by a subsequent storage of its result (stored hardware 
reference). The information loss related to the response compression and the 
potential faults in the compression algorithm can result in an additional fault 
escape (nondetected faults). For a 16 bit long signature - as used in our 
algorithm - the probability of the identity of the signature of a random result 
with the reference is 2 16 «0.002%). The usual characteristic of the algorithms 
is 90-95% fault coverage. Accordingly, the increase is negligible compared with 
the 5-10% fault escape of the algorithm itself. Therefore, even the information 
compression can be untested or faulty. The reliability of the response 
evaluation is determined by the instruction sequence comparing the measured 
result and the reference (two 16 bit words). This can be easily pretested by 
means of control sensitization. 



42 A. PATARICZA 

For the realization a so-called copy RAM of the same size as the register 
set of the CPU is assigned in the memory. In each response-generating phase 
the whole register-set of the CPU is stored into this RAM. In the memory a 
location for the signature is reserved. The execution of a typical test program 
segment has the following execution sequence (Fig. 1): 

1. At first a test instruction sequence segment is executed, usually 
generating results in the CPU registers; 

2. The whole register set of the CPU is saved into the copy RAM; 
3. The signature containing the accumulated compressed information is 

modified according to the contents of the copy RAM; 

Y 

TEST 

MODE 

EXECUTE 
INSTRUCTION 
TO BE TESTED 

SAVE 
REGISTERS 

INTO COpy RAM 

RESTORE 
REGISTERS 

FROM COpy RAM 

RESULT 

EVALUATION 

MODE 

-----------, 
INFORMATION I 
COMPRESSION I 
SUBROUTINE I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I - __________________ J 

Fig. 1. Typical test program flow chart (simplified) 



TESTING OF MICROPROCESSORS 43 

4. The register set is restored from the copy RAM and the test continues. 
Steps 2-4 emulate an external response evaluator and a data compressor 

by the CPU, with observability of the content of the internal CPU registers. It is 
important that steps 2-4 are the same for all test segments, therefore they can be 
implemented as a single subroutine for the whole test. Each test segment 
contains only a corresponding subroutine call instruction. This results in a 
significant reduction in the static program length at the expense of increased 
run-time. The fault coverage is randomly increased (the data from all registers 
are always evaluated, independently of which register contains the result). 

For protection from distorted program execution due to faults in the 
additional resources in theory the previous testing of the RAM locations used 
for program- and test control (eg. program counter-copy, cycle variables in 
pattern generation etc.) is sufficient. Due to the small size of the used RAM and 
the easy implementability of memory tests with good fault coverage the test of 
the whole used RAM area (for Z80 cca 40 bytes) is reasonable. 

The main steps of the CPU test are as follows: 
Testing the response evaluating instructions (comparison and 
conditional jump) by control sensitization, 
Checking the ROM containing the test program by means of 
comparison between the burned-in reference and the generated ROM 
signature, 

- Testing the RAM used by the test, 
- Register and data path test, 
- Test of arithmetical and logical unit (ALU) and the flags, 
- Evaluation of the compressed response. 
The separate register and data path tests of the S-graph method are 

extensive and complicated. The implementation of the following algorithm 
with similar fault coverage was reasonable: 

The patterns of a memory test with good fault coverage [13J are 
stepwise generated in the copy RAM (with the exception of the PC 
copy). 
The content of the copy RAM is loaded into the register set. 

- The register save - information compression - register restore 
sequence is executed as described earlier. 

- The next memory test pattern is generated etc. 
The "black-block" tests of the ALU were of extreme long run-time, ego the 

exhaustive test of an operation on two, eigth bit wide operation is of 216 test 
steps. Accordingly, the implemented test is based upon assumption for the 
structure and faults of the ALU as usual for the heuristic tests. (Eg. for the 
logic operations on two operands - with the assumption of bit wise operation, 
stuck-at and coupling faults 10 patterns are sufficient as test). 



44 A. PATARICZA 

Conclusions 

The algorithm presented in this paper is based on the usual specification 
for self-test in microprocessor controlled instrumentation. It is based upon the 
"no-diagnosis" requirement for this category, and accordingly by the 
fundamental use of information compression methods it provides an important 
decrease in static program length and complexity. The method of the test 
program development use no CPU-specific features, so the algorithm can be 
adopted to each CPU type. 

References 

1. HORVATH, I.-PATARICZA, A.-SELENYI. E.: Field Service System for Intelligent Measuring 
Equipment; Periodica Polytechnica-Electrical Engineering, Vol 28. No 1.,29-41. 

2. JOBB . .\GY, A.-PATARICZA, A.-SELENYI, E.: Self-test and Field Maintenance System for 
Microprocessor Controlled Instrumentation; Xth World Congress ofIMEKO, 1985., Vo!. 
5.,69-77. 

3. JOBBAGY, A.-PATARICZA, A.-SELENYI, E.: Service and Maintenance for a Microprocessor 
Application System: Problems and Solutions; ATE'85 Conference, 1985., pp. 3.5.1-3.5.16. 

4. KUBAN, J. R.-BRucE, W. c.: Self-Testing the Motorola MC6804P2; IEEE Design & Test, 
May 1984., pp. 33-41. 

5. THATTE, S. M.-ABRAHAM, J. A.: Test Generation for Microprocessors; IEEE Transactions on 
Computers, Vol C-29., No 6.,429-441 (1980). 

6. SUN, Z.-WANG, L. T.: Self-Testing of Embedded RAMs; IEEE 1984 International Test 
Conference, pp. 148-156. 

7. BRAHME, D.-ABRAHAM, J.: Functional Testing of Microprocessors; IEEE Transactions on 
Computers, Vol C-34., No 6.,475-485 (1984). 

8. THEVENoD-FossE, P.-DAVIO, R.: Random Testing of the Control Section of a Microprocessor; 
FTCS-13., IEEE 13th International Symposium on Fault-Tolerant Computing, 1983. pp. 
366-373. 

9. SALUJA, K. K.-SHEN, L.-Su, S. Y. H.: A Simplified Aigorithm for Testing Microprocessors: 
IEEE 1983 International Test Conference, pp. 668-675. 

10. ANNARATONE, M. A.-SAl>lI, M. G.: An Approach to Functional Testing of Microprocessors; 
FTCS-12, IEEE 12th International Symposium on Fault-Tolerant Computing, 1982. pp. 
158-164. 

11. ABRAHAM, J.-PARKER, K.: Practical Microprocessor Testing: Open and Closed Loop 
Approaches; IEEE COMPCON Spring, 308-311, 1981. 

12. PATARICZA, A.: Some Properties of Signature Analysis Newsletter; Technical University of 
Budapest, 4., 27-31 (1986). 

13. MARINESCU, M.: Simple and Efficient Algorithms for Functional RAM Testing; IEEE 1982 
International Test Conference, 236-239. 

Andnis PATARICZA H-1521 Budapest 


