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Abstract 

In this report, a method is outlined for handling the logic control procedures both in the 
specification level and on the hardware implementation level of the design. The heuristic and 
intuitive character of constructing the flow chart and defining the states has been reduced to a 
large extent. 

This method may result in several kinds of uniform hardware structures for either 
synchronous or asynchronous control units initially specified only by input-output sequences. 
Introducing differential mappings for the description of sequential operation, the prescribed 
sequences for input and output changes can be considered as the initial specification of a control 
unit. This specification yields a so-called B : K table and aB: K graph as representation of the 
required operation. 

The definition of the states is made by interpreting the compatibility relation between the 
prescribed output changes. . 

The procedure of the state definition results in the B: K : A set or graph which 
corresponds to the minimised flow table obtained from the state reduction of incompletely 
specified sequential circuits. The properties of the canonical B : K set and graph always ensure 
the existence of an optimal cover. If the fixed hardware structure contains flip-flops for storing 
the output combination, then the influence of these flip-flops on the state reduction are 
automatically taken into consideration by the method outlined in the report. 

Also, by the introduction of an optimal cover for the identifying functions related to the 
output changes, the logical expressions for the realisation of the hardware can be simplified. 

The specification and description method, outlined in this report, has the advantage of 
defining the prescribed sequences of input and output changes in separate fragments. Applying 
the prescribed input section changes. these separate fragments can be joined together and the 
B : K set can be calculated systematically. In this way, the specification for the synthesis 
procedure may become more rigorous than it was initially. However, it is not necessary to form a 
coherent specification by intuition. 
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Introduction 

A logic control procedure is realised by a sequential circuit which can be 
considered as an abstract automaton defined by the mappings fz and fy as 
follows: [lJ [4J 

fz(X,y)~Z 

fy(X,y)~Y 

where X is the set of input combinations, 
Z is the set of output combinations, 
y is the set of secondary combinations actually present at the input and 

so representing the present state of the automaton, 
Y is the set of secondary combinations actually present at the output 

and so representing the next state of the automaton. 
There is a correspondence indicating which elements of the sets X and y in 

the arguments are mapped onto which elements of the sets Z and Y, 
respectively. Only this correspondence specifies the automaton or sequential 
circuit. 

The model fAX, y)~Z is called the Mealy-type [1J and it can be 
transformed into the Moore-type model [lJ, in which the output combinations 
(Z) are not directly influenced by the input combinations as formalized by a 
mapping f~(y)~ Z. 

In Figure 1, the dashed units in the feedback lines are D-type flip-flops. In 
the case of synchronous sequential circuits, they periodically open the feedback 
lines. 

The feedback lines of an asynchronous circuit are always closed. 
The flow table [lJ or a graph-representation [lJ of the mappingsfz andfy 

does not uniquely characterize a sequential circuit unless it is known whether 
the circuit is synchronous or asynchronous. 

The classical analysis and synthesis procedures, based on the flow table or 
graph, are hard to handle--even by computer-in the case of sequential 
circuits with a large number of inputs. Since the number of input combinations 
increases exponentially with the number of input variables, this problem arises 
even in the case of more than five or six inputs. Another difficulty, caused by a 
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large number of inputs, is the handling of the "don't care" combinations, the 
number of which also grows very quickly with the number of inputs. 

In practice, the control units of digital systems can be characterized­
even in simple cases-by a relatively large number of inputs and outputs. One 
reason for this is that the control unit must communicate with the environment 
as well as with the functional units of the system. This communication, 
described by the control procedure, generally requires-even in simple 
systems-many inputs and outputs from the control unit. 

For this reason, the practical methods for the synthesis of control units or 
sequential circuits, whith a large number of inputs, are based mainly on various 
kinds ofjlow-chart [2J [3J [6J [7J [8]. These flow-charts can be considered as a 
directed graph representation of the control procedure. The construction of the 
flow-charts and the definition of the states on them are basically heuristic and 
intuitive. 

The flow chart is the initial description of the control procedure for the 
most usual hardware realizations having fixed uniform structure [2J [3J [5J 
[6J [7J [8]. 

One of these uniform fixed structures is shown in Fig. 2 and is called the 
synchronous phase register structure [6J [8]. The combinational part (C) may 
be realised by memory units. The phase register and the synchronizing flip­
flops and the clock-enabling network can be considered to be drawn together 
as a processor. This yields a kind of microprogrammed structure according to 
Fig. 3. 

Further on, a method will be outlined, which eliminates to a large extent 
the heuristic and intuitive feature of the construction of the flow chart and the 
definition ofthe states (phases). This method may result, in a mostly systematic 
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way, in several kinds of uniform phase register structures for either 
synchronous or asynchronous control units initially specified only by input­
output sequences. 

For this purpose, the mappings!, andfz will be represented by mappings 
of the changes between the input, output and secondary combinations. 
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In the specification of a control procedure, the sequences of output and 
secondary combinations are generally prescribed as the response to only a few 
ofthe possible sequences of input combinations. In this sense, a given sequence 
of input, output or secondary combinations can be said to be prescribed or not 
prescribed. The sequences of input combinations, not prescribed by the control 
task, may cause arbitrary sequences of output and secondary combinations 
and can be considered as "don't care" sequences. Similarly, the sequences of 
output and secondary combinations, which are not prescribed for any of the 
sequences of input combinations, can also be handled as "don't care" 
sequences. 

Let a single combination (input, output or secondary) be defined as a 
prescribed one, if it occurs in at least one of the prescribed sequences. 

3 Periodica Polytechnica Electronica 31/3-4 
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Let the differential mappings <{Jz and <{Jy be introduced as follows: 

<(JAB, y)=> K <(Jy(B, y)=> A , 
where 

[ : 1 denotes the set of prescribed combination-pairs, the elements of which 

occur adjacently in at least one of the prescribed sequences of 

m 

[

input 

output 

secondary 

I combinations. 

Let the set I: 1 be called the set of the 

[

input I 
prescribed output changes. 

secondary 

Where the symbols { } are used, it is intended to avoid repetition. Thus, 

{ 
B 1 I input 1 K denotes output 

A secondary 

B is intended to be read with input; K with output and A with secondary. 
A control unit should produce a prescribed response only for prescribed 

input changes. In other words, it can be assumed that the control unit receives 
only prescribed input changes starting with an input combination related to 
the initial state. 

Let { B{} denote the prescribed { input} change which is realised if the 
K'; output 

{
input} .. {from Xi to Xi} 

combmatIOn changes f zn zm output rom to 
Let A~ denote the prescribed secondary change, during which the control 

unit executes a state transition from the present state characterised by the 
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secondary combination yS to the next state characterised by the secondary 
combination P. 

The meaning of the differential mappings ({Jz and ({Jy can be illustrated as 
follows: 

If ({Jz(B{ ,l)=>K~ and ({Jy(B{ ,l)=>A~ are given, then 

jz(Xi
, l)=>zp jy(Xi, y)=> yk 

are assumed. 
This means that l in argument of ({Jz and ({Jy denotes always the present­

state secondary combination at the beginning of B{ . This l is assumed to be 
produced as next state secondary combination by the predecessor prescribed 
input change at the occurrence of Xi starting from the predecessor present state 
yS . 

The differential mappings illustrated above do not distinguish the 
synchronously working control units from the asynchronously working ones, 
because ({Jy does not make any restriction on the result of the mappingjy when, 
for example, Xi occurs during l. For synchronous control units, the next-state 
secondary combination produced by jy(X i

, l) can be considered as a "don't 
care" one [1]. In asynchronous cases however, the normal fundamental mode 
[4J requires jy(X i

, l)=> yk . 
Though the principles of Bochmann and Posthoff[11J for the differential 

vectors in the Boolean space are mathematically very sound, their approach 
has not been used in introducing the differential mapping and handling the 
changes of combinations in this paper. For, the method outlined in this paper 
does not interpret the difference dXi,i = Xi EB Xi, because the directions of 
changes of each signal and the starting and ending combinations are important 
in several steps of the method. So, the difference dXi,i alone could not anyway 
represent the change from Xi to Xi. 

For example, let the prescribed sequences of input, output and secondary 
combinations be given and let us assume a correspondence between them as 
follows: 

Xi Xi xn xq X h 

za Zb zc Zd ze 
yk yt yP yu yr 

Using the notation for the changes of combinations: 

BI B~ Bq Bh 
1 ] n q 

3* 
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If y' is assumed to be the initial state, then the prescribed sequences of 
combinations given above can be expressed with the help ofmappingsfz andfy 
as follows: 

fiXi,/)~za 

fiXi,/)~Zb 

fz(Xi, i)~Zb 

fixn,i)~Zc 

fixn, yP)~ZC 

fz(xq, yp)~Zd 

fz(Xq, yu)~Zd 

fz(Xh, yu)~ze, 

or using the differential mappings: 
i k b <piB;, y )~Ka 

<pz(B'J, i)~Kb 

fiXi, yS)~ yk 

h(Xi, I)~ yt 

fizn,i)~yp 

h(xq, yP)~ yu 

fy(Xh, yu)~ yr 

<piB!, 1)~Ai 
<py(B'J, i)~ Af 

<piB~, yP)~K~ <Py(~, yP)~A; 

<piB~, yU)~K~ <piB~, yU)~A~ 

The fragment of the classical flow table [1] in Fig. 4 is filled out according 
to the specification prescribed by the sequence given above. The symbol" -" 
emphasises that no prescription for Z or Y can be derived from the sequences. 
The continuous arrows show state transitions corresponding to the synchron­
ous mode. 

Along the dashed arrows, a normal asynchronous mode is illustrated by 
properly fixed values of Y-s not prescribed in the original sequences. 

There are control procedures in which certain prescribed input changes 
must not cause any change in the output and secondary combination. For 
example, let a fragment of the corresponding prescribed sequences be given as 
follows: 

... Xl X 2 X 4 X 3 X 5 X 6 X 2 X 7 X 8 X 9 

. .. yl y3 y2 y2 y2 y2 y4 y6 y6 y7 

... Zl Z2 Z5 Z5 Z5 Z5 Z3 Z3 Z4 Zl 

The indices only serve to distinguish the combinations from one another of 
own kind. So, for example, X 2, y2 and Z2 do not represent necessarily the same 
binary combination. 
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Fig. 4 

The control unit specified by the above fragment of prescribed sequences 
can be considered as insensitive to the fragment X 4

, X 3
, X S

, X 6 occurring after 
X 2

, because no changes are prescribed either in the secondary or in the output 
combination. 

Using the notation for the changes of combinations: 

Bi Bi Bl B~ B~ B~ Bj B~ B~ 

Af A5 A2 A2 A2 Ai A~ A6 A~ 

Ki K~ Ks Ks Ks K~ K3 K1 Ki 

where {KAi} denotes fictive {secondary} change, during which the 
i output 

{SeCOndary} combination preserves the value {zY;}. 
output 

A more concise description can be formed by sectioning the prescribed 
input changes according to the fragments of insensitivity. A control procedure 
remains unaltered and corresponds to the original specification if the control 
unit is defined to be insensitive to any sequences of input combinations or 
changes occurring between the beginning and the end of a fragment of 
insensitivitiy. 

In this sense, the changes from the beginning to the end of a fragment of 
insensitivity are not considered to be prescribed ones. In the example 
mentioned above, this interpretation means that the control unit is prescribed 
to be insensitive not only to the sequence X 4

, X 3 , X S
, X 6

, but to any other 
sequences of prescribed input combinations not containing X2. In this way, the 
original specification of the control procedure becomes more rigorous, because 
the insensitivity is also prescribed for some of those input sequences whose 
effects were unspecified originally. 
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This modification should be useful because it gIves a more concise 
description. 

Let [BfJ denote the prescribed input section change which represents all of 
the possible sequences of prescribed input changes starting with Xi ending with 
X j and containing X j only once (at the end). 

Introducing the notation of the prescribed input section change, the 
fragment in the example can be rewritten in a more concise form as follows: 

Bi Bi [BiJ Bi B~ B~ 

Ai A~ Ai A~ A6 A~ 

... Ki K~ K~ K3 Kj Ki 

In the flow-chart description of synchronous control units, we may 
usually define output pulses as two prescribed output changes occurring 
immediately after each other without any prescribed input changes. As an 
example of this, let the fragment of combination sequences be given as follows: 

y1 y2 y3 y4 y1 y5 

21 24 2 5 21 2 3 2 6 

As a response to X 4, y3 and 2 5 occur. Without any further input changes 
the secondary and output combination change to y4 and 21. The duration of 
y3 and 2 5 depends on the hardware structure and this duration in turn 
determines the width of the pulse. 

In the formal description based on the prescribed changes, thefictive input 
change can be introduced: 

Bi Bj B4 Bi B~ 
Ai A~ Aj Ai Ai 

... Ki Ki K~ Ki K~ 

The notation Bi represents formally the fictive input change, during 
which the input combination Xi remains at the input. 
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H. The specification of the control procedure 
by the prescribed input and output changes 
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Let B(K:;') denote the set of all prescribed input changes which cause the 
output change K:;' in at least one prescribed sequences of input and output 
changes. 

Let {(i~~} denote the set of all prescribed output changes which are 

d· Km {predecessors} . 1 'b d f a Jacent to n as III at east one prescn e sequence 0 output 
successors 

changes. 
Let (K:;')B denote the set of all prescribed input changes which are 

adjacent as successors to at least one element of B(K:;') in at least one prescribed 
sequence of input changes. 

The meaning of the notations B(K:;'), K(K:;'), (K:;')K and (K:;')B can be 
formally extended also for fictive changes. 

B(K) B(K:;') 

K(K) K(K:;') 
Let denote the set of all sets specified III the 

(K)K (K:;')K 

(K)B (K:;')B 
control procedure for every K:;' E K including also the fictive changes. Let B: K 
denote the set of the sets B(K), K(K), (K)K and (K)B specified in the control 
procedure. 

Theorem 1 

The set B: K is an unambiguous representation of a control procedure 
specified by the prescribed sequences of input and output changes, if and only if 
no such K:;', K~ and K';" can be found, for which 

K~ E (K:;')K and 

and (K:;')BnB(K~)nB(K';,,) #- 0 are valid. 
The notations E and n have the meaning as used in the algebra of sets and 

o denotes the empty set. 

Proof 

Necessity 

If there exists a B{, such that (K:;')BnB(K~)nB(K';,,) = B{, then it Gannot be 
said, whether K~ or K';" would be the response to B{ occurring after K:;'. 
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Sufficiency 

If the expression (K':)BnB(K::,)nB(K~) = 0 is valid/for every K::' E (K':)K 
and K~ E (K':)K, then the response can be uniquely predicted for every 
prescribed input change occurring after each output change according to the 
initial specification. 

As an example for Theorem 1, let us consider firstly a control procedure 
specified by the prescribed sequences of input and output changes as follows: 

hi B~ Bi Bi Bi Bi B1 

Ki K4 K4 K4 K4 K4 Ki 

The arrow at the beginning shows the starting point, i.e. the initial state. Let us 
assume that finishing a prescribed sequence means always returning to the 
initial state. 

The set B: K can be generated from the sequences of input and output 
changes: 

B(Ki) = {Bi}; B(K4) = {Bi, Bi, Bn; B(Ki)={B1} 

K(i) = {Ki}; K(K4)= {K4' Ki}; K(Ki) = {Ki} 

(Ki)K = {K4}; (K4)K {K4' Ki}; (Ki)K ={Ki} 

(Ki)B= {B~}; (K4)B= {Bi, Bi, Bn; (Ki)B={Bi} 

In Figure 5.a, the set B: K is represented by a table called the B: K table. 
The rows of the B: K table contain the elements of the sets K, B(K), K(K), K(K), 
(K)B respectively. In a cell of the rows, the corresponding input or output 
changes are characterised only by their lower and upper indices. So, for 
example, 32 is written instead of B~. 

In Figure 5.b a directed graph representation is shown for the set B: K. 
The nodes of the graph represent the output changes and the edges are defined 
by the input changes. For flowchart-like interpretation let this graph be drawn 
in the form shown in Fig. 5.c. Let this form of the directed graph generated by a 
B : K table be called the B: K graph. 

The B: K set of this example does not contain any pairs of output changes 
which would exclude the unambiguous representation of the prescribed 
sequences according to Theorem 1. It can be observed in Fig. 5 that the 
prescribed sequences given above can be read out from the B: K table or B: K 
graph. In this case not only the sequences initially prescribed are represented by 
the set B: K, but the number ofthe represented sequences can be considered as 
infinitely large. Namely, all sequences, in which the series Bt Bi with K4 
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repeats itself several times, are included in the set B: K. For that reason, in this 
example, a more concise initial specification can be formed by using the 
possibility of defining prescribed input section changes as follows: 

hi B~ [BD 

Kt K4 K} 

The B: K table and graph are shown in Fig. 6. It is obvious that in this 
case the set B : K represents not only the repeating series BiB~ with K4 but also 
every sequence in which there occurs any input combination preserving Z4 
after X 2 with the exception of Xl. 
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As an other example for Theorem 1, let a control procedure be given by 
the prescribed sequences as follows: 

hi B~ Bi Bl Bi Bl Bi Bl 

Ki K4 K4 K4 K4 K4 Kl K~ 

From the B: K table shown in Fig. 7.a, it can be seen that 

Thus, according to Theorem 1, the set B: K cannot represent unambiguously 
the sequences given initially. The problem emerges, when we try to construct 
the B: K graph. This is illustrated in Fig. 7.b. There is no information in the set 
B: K as to whether K4 repeats itself or is followed by Kl at the occurrence of Bi. 

It is obvious that a counting-like procedure, as given in the example, 
yields always ambiguous B: K sets. 

To eliminate this problem, let the recurrent output changes be introduced. 
Let Ql ... Qi· .. Q4 be proper nonempty disjoint subsets of 

B(K;) 

K(K;) 

(K;)K 

(K;)B 

K; can be substituted by its copies as recurrent changes 
K;/l, ... K;/i, ... K;/h, for which 

The sets 

B(K;/i)=Qi 

K(K;/i)=Qi 

(K;/i)K =Qi 

(K;/i)B=Qi 

(1 ~ i~h). 

K(K;/i), (K;/i)K, (K;/i)B 

B(K;/i), (K;/i)K, (K;/i)B 

B(K;/i), K(K;/i), (K;/i)B 

B(K;/i), K(K;/i), (K;/i)K 
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can be determined formally, based on the set B: K, following the consequences 
of splitting the sets according to Qcs. 

Let K4/1 and K4/2 be introduced instead of K4 in the example shown in 
Fig. 7 according to the subsets of B(K4):Ql ={B~Bi}, Q2={B~.}. 

The modified B: K set is shown in Fig. 8. However, it is not unambiguous 
at this point, because K4/1 E (K4/2)K; K~ E (K4/2)K and (K4/2)BnB(K4/1) 
nB(K4/2) = {Bi}. 

K 14 4/1 4/2 42 21 

B(K) 13 32 42 24 41 
24 

K(K) 21 4/2 4/1 4/2 42 
4/1 
14 

(K)K 4/1 4/1 42 21 14 
4/2 4/1 

(K)B 32 24 24 41 13 
42 

Fig. 8 

Now, let K4/11 and K4/12 be introduced instead of K4/1 according to the 
subsets of K(K4/1): Ql ={Ki, K4/1}, Q2={K4/2}. 

THe modified B: K set in Fig. 9 shows that 

K4/12 E (K4/2)K; K~ E (K4/2)K and 

(K4/2)BnB(K4/12)nB(K~) = {Bi} 

So, even after this, the B: K set is not unambiguous. 

K 14 4/11 4/12 4/2 42 

B(K) 13 32 24 42 24 
24 

K(K) 21 4/11 4/2 4/12 4/2 
14 4/11 

(K)K 4/11 4/11 4/2 4/12 21 
42 

(K)B 32 24 42 24 41 
42 

Fig. 9 

21 

41 

42 

14 

13 

Let K4/21 and K4/22 be introduced instead of K4/2 according to the 
subsets of K(K4/2): Ql = {K4/11}, Q2 = {K4/12}. Finally, this modification, 
shown in Fig. 10, yields an unambiguous B: K set according to Theorem 1. 
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K 14 4/11 4/12 4/21 4/22 42 21 

B(K) 13 32 24 42 42 24 41 
24 

K(K) 21 4/11 4/21 4/11 4/12 4/22 42 
14 

(K)K 4/11 4/11 4/22 4/12 42 21 14 
4/21 

(K)B 32 24 42 24 24 41 13 
42 

Fig. 10 

The recurrent output changes introduced above result in the notations in 
the prescribed sequences as follows: 

Kt K4/11 K4/11 K4/21 K4/12 K4/22 Ki K~ 
The B: K graph derived from Fig. 10 is shown in Fig. 11. The unambiguous 
B: K set is always derivable by the steps illustrated above. In the case of 
counting-like control procedures, the number of steps needed to introduce 
recurrent output changes can be greatly reduced by using counters as 
functional units outside of the control unit. 

If the set B : K is given, then the control procedure is specified, because the 
prescribed sequence of output changes is determined by the set B : K for every 
prescribed sequence of input changes. For, it is obvious from its definition that 
the set B: K represents all of the prescribed sequences of input and output 
changes and also the correspondence between them. 

Later in this paper, it will be assumed that the control procedure is 
specified by the unambiguous B: K set without fixing the secondary 
combinations and their changes. The secondary combinations will be defined 
during the synthesis procedure as the states and the state transitions of the 
control unit. 

It can be shown that the sets K and B(K) contain all the necessary 
information for the construction of aB: K set which will represent all of the 
possible sequences of input and output changes, provided that these changes 
are not excluded by K and B(K). Let this type of set B: K be called completely 
calculated B: K set. 

The control procedure may have extra restrictions on the prescribed 
sequences excluding some of total number of possible sequences calculatable 
from the sets K and B(K). In this case, an incompletely calculated B: K set is 
obtained. 
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If the whole set B: K is given as the initial specification of the control 
procedure, then it will be called the initially defined B: K set. 

The calculation of the set B : K can be based on the operations and rules 
as follows: 

Let the operation denoted by :d be defined on a set 

{{B~' [~J ... B{, Bi , Bp, B;}} f 
{K~, K~ ... K';:, Kn , Kh , K~} 0 
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{input} changes with the resulting set 
output 

o corn matlOns. {
{Xb

, Xd ... xj, XP, xn} } f {input } b" 
{Zb, Zd ... zm, zn, Z\ Zl} output 

Let the operation denoted by - 1 be defined on a set 

{{B~' [B~J ... B{, B j , B;} } f 
{K~, K~, ... K;, K n , K h , K~} 0 

{input } chang~s with the resulting set 
output 

{
{Bb, [~J ... B~, Bj , Br> B~}} f {input} h o c anges. 
{K/:, K~, ... K':", K n , K h , K:} output 
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According to their definitions, the operations: d and - 1 handle the fictive 
changes in a special way. 

Rule 1: If K; E K(K~), then 

B(K;): dnB(K~)-l: d #0 and (K;)BnB(K~)#0 

Rule 2: If K~ E (K~)K, then 

B(K~):dnB(K~)-l :d#0 and (K~)BnB(K~)#0 

Rule 3: If B{ E (K;)B, then B(K;)nBi_ #0 and there exists a K:;', such that 
K; E K(K:;') and B{ E B(K:;') are valid (Bi_ denotes the set of all input changes 
finished by Xi) 

Rule 4: If B{ E B(K;), then (K;)BnBj- #0 and there exists a K;, such that 
K; E K(K;) and B{ E (K;)B are valid. (Bj denotes the set of all input changes 
starting from X j) 

The rules summarised above are also valid and formally extendable for 
fictive and recurrent changes. Let the output signals be called affected by the 
output changes K; if their values alter during K;. 

Later in this paper, it is assumed that the fixed hardware structure of the 
control unit stores not only the secondary combinations as states, but also the 
output combinations by output flip-flops. This extra function is usual in 
practice, since it also prevents output hazards as is shown in the synchronous 
phase register structure in Fig. 2. 

In this case, the prescribed output and secondary changes can be uniquely 
characterised by fixing only the initial output and secondary combinations and 
by giving step by step those output and secondary variables which correspond 
to the changing of the affected output and secondary signals. 
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Thus, the mappings <{Jz and <{Jy can be substituted by mappings which 
result in changes of output and secondary signals instead of changes of 
combinations. 

Let 
<{Jz(B{, /)=>K: and <{JiB{, /)=>Af 

be given assuming that 

K::ZrZsZv and Af: faYi,fc 

which represents that Zr' Zv and Yi, change from 0 to 1, Zs' y" and ~ change 
from 1 to 0 during K: and Af respectively. 

Let the notations be introduced as follows: 

P: = ((ZrZv)(Zs)) Sf = ((Yi,)(Y" ~)), 

where {~i} is an incompletely specified two-block-partition on the set of the 

{
output } . bl d' h {output }. I h fi 

d 
vana es correspon mg to t e d sIgna s. T e lrst 

secon ary secon ary 

block of {~i} contains the variables changing from 0 to 1 during 

{~n. The second block of {~i} contains the variables changing 1 to 0 

during {~f}' 
Let the set of all {~n be called the set of {~} partitions. Using this 

notations, the mappings Y" and v;, can be defined as follows: 

Y,,(B{, i)=> P:, v;,(B{, /)=>Sf, 
or in general: 

Y,,(B, y)=>P 

In consequence of having introduced the fictive changes, the result of the 

mapping {~} can also mean fictive changes. In such cases, empty partitions 

denoted by {~:} are used for formal interpretation. 

Let S(K:) denote the S partitio'n belonging to K:. Let A(K:) denote the 
prescribed secondary change belonging to K:. 

A secondary change belongs to K: if it is generated during K: in every 
prescribed sequence of changes containing K:. 
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Ill. The compatibility of the prescribed 
output changes 
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Let aB: K set or B: K graph be called an open one, if it does not contain 
any output changes K':, such that 

B(K,:)nB(K':) -1 =I 0 
It is obvious, that any unambiguous B : K set or B: K graph can be made open 
by introducing recurrent output changes. For example, aB: K graph is given in 
Fig. 12. This graph is not open, because 

B(Kj)nB(Kj)-l = {Bj} =10. 

Introducing Kj/1 and Kjj2 according to Q1 Bj and Q2 = Bl of B(Kj), the 
B: K graph becomes open, as it is shown in Fig. 13. Later on, it is assumed that 
the B: K sets and B: K graphs are open and unambiguous. 

8 2 , 
I 

K2 

I' 
83 

2 8" 2 
! 

1 
I 

K3 

12 
8 3 s: 3 " I 

I 
I 

K" 

1
3 

8' 
" 

8' 3 

I 
K~ 

Fig. 12 

Two prescribed output changes KT and K; may occur in the same state l 
if 

Y,,(B E B(K':), l)-::::;. P': and 

Y,,(B E B(K;), l)-::::;.P; and 

Yy(B E B(K':), l)-::::;.S(K':) and 

Yy(B E B(K;), l)-::::;.S(K;) are valid. 

4 Periodica Polytochnica Electronica 31(3-4 
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In other words, both Pr;:, P~ and S(Kr;:), S(K~) can be distinguished by the input 
changes in the common state l. 

Let the output changes Kr;: and K~ be said to be parallel if every output 
signal affected by either Kr;: or K~ has the same value both in zm and zr. In 
notation: Kr;:IIK~. For example, if 

Z1 

zn: 0 

zm: 1 

Zp: 0 

zr: 1 

o 
1 

1 

1 

1 0 

o 0 

1 1 

o 1 

1 

1 

o 
1 

then Kr;:IIK~, becauseKr;:: Z1Z223, K~: Z123Z5 and Z5 = 1 in zm and Z2 = 1 in 
zr. 

Fig. 13 

For two arbitrary fictive output changes, KnllKp is always true, because 
fictive output changes do not affect any output signals. 

The relation 11 can be interpreted also for secondary changes. If the 
hardware structure constrains the secondary combinations to be only in 1-
from-n-code, then A(Kr;:)IIA(K~) can be valid only if both A(Kr;:) and A(K~) are 
fictive or A(Kr;:) = A(K~). 
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Theorem 2 

Assuming that the relations K;IIK~, K;IIK p , K~IIKn are not valid, the 
prescribed output changes K': and K; may occur in the same state if and only if 

B(K;): dnB(K;): d = f/J and 

B(K;):dnB(K;)-l :d=f/J and 

B(K;)-l :dnB(K~):d=f/J 
are valid. 

Proof 

Necessity 

If any of the expressions in the theorem were not valid, then input changes 
might occur in a common state which would cause the changes according to 
both P; and P;. 

Sufficiency 

If the expressions of the theorem are valid, then in the common state l, 
no such prescribed input combinations can be present or occur which would 
cause the changes according to both P; and P;. So, the mapping l"z is able to 
distinguish P; from P; based on the prescribed input changes only, assuming 
the secondary combination l. Similarly, the mapping v;, is also able to 
distinguish S; from S~ with the help of the prescribed input changes in l. 

It can be proved that if two prescribed output changes may occur in the 
same state, then they are in a compatibility relationship. In notation: K; '" K~. 

In special cases, the conditions of Theorem 2 can be relaxed independ­
ently of each other. For example, it can be proved [1OJ that if K;IIK~, K':IIKu, 
K~IIKn are true simultaneously and both A(K;) and A(K~) are fictive, then K; 
'" K~ is fulfilled independently of the B(K) set. So, this case can be called input­
independent compatibility. It can also be shown [10J that if K;IIK~, K;IIKu are 
true and both A(K;) and A(K~) are fictive, then the condition 

B(K;)-l :dnB(K~):d=f/J 

is sufficient and necessary for K': '" K~. 
Let another example be mentioned for the case of K; E K(K~) and 

K~ E (K;). In this case, the sufficient and necessary condition for K; '" K~ is 

B(K;): dnB(K~): d =f/J 
only [10]. 
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1ST tT I I PARKOMP I 
y n 

r(Q)'d~ B(b),d"' -------, 

Y -1 n c:::; Bfb) ,d"' ---, '-_-' 

y -1 n 
8(0): d () B(b): d = (/) I 

116' n 

Fig. 14 

Based on Theorem 2 and considering all of the special cases [10], an 
algorythm can be developed for the pair-wise compatibility checking of the 
prescribed output changes. This algorythm called PARKOMP is illustrated by 
a flow chart in Fig. 14. The output changes to be checked are denoted by a and 
b. 

The notation a - 1 : d represents formally a fictive output change which 
can be derived from a in the case of a=K';, as Kn. The algorythm PARKOMP 
may result in a conditional compatibility relationship between a and b. The 
conditions arise at three points of the flow chart, where they are represented by 
(a)K -(b)K, a-(a)K, b ,,-,(b)K, respectively. 

The meaning of these symbols is as follows: 
- (a)K ,,-,(b)K means the condition which is fulfilled, when each successor of a 

is compatible with each successor of b. 
- a- (a)K means the conditions which are fulfilled, when a is compatible with 

each of its successors. 
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- b,...., (b}K means the conditions which are fulfilled, when b is compatible with 
each of its successors. 

The algorythm PARKOMP provides a conditional compatibility if the 
termination a,...., b in the flow chart of Fig. 14 is reached by passing at least one of 
the possible conditions. It is assumed in Fig. 14 that the secondary 
combinations are in 1-from-n code. 

With the help of the algorythm PARKOMP, the well-known com­
patibility table can be filled out and the maximal compatibility classes of the 
prescribed output changes can be determined. 

Based on these compatibility classes, special closed covers are obtainable 
for the state-definition. 

B; 
\ 

G) K~ K~ CD 
I I 
S; B6 
I 1

3 

B; I Q) K~/, K3 @ ~ I I 
® K3h K; ® 

I 
0= [I,2,3,",5,'J 

B'5 B~ 

/ ~ 
K" ® CV K~ \1 

8, 
I 
K2 @ 
I" 
B5 
I1 

K2@ 
I 

87 

f 16 ~~ 
® K;/2 K~ @ 

I 
B~ 

I 
@ K' J 

Fig. 15 
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As an example let aB: K graph be given in Fig. 15. The formal 
transformation of the circled part is made for the simple handling of the input 
section change during the algorythm PARKOMP [10]. The B: K set is shown 
in Fig. 16. Let the prescribed output combinations be assumed as shown in Fig. 

K 12 13 23/1 3 34 43 4 42 2 23/2 24 31 

B(K) 12 13 24 36 45 54 57 71 16 67 65 71 
[65J 

K(K) 31 31 12 13 23/1 34 34 4 42 2 2 23/2 
3,34 24 

(K)K 23/1 3 34 34 43 34 42 2 23/2 31 43 12 
4 24 4 13 

(K)B 24 36 45 45 54 45 71 16 67 71 54 12 
[65J [65J 57 [65J 65 57 13 

Fig. 16 

21 22 23 24 

21 0 1 0 0 
22 0 0 0 I 
2 3 0 0 1 0 
24 I 0 0 1 

21 22 23 24 

K2 1 0 0 0 1 
0 I 0 0 

K3 1 0 0 1 0 
0 1 0 0 

K~ 0 0 1 0 
0 0 0 1 

K4 3 1 0 0 
0 0 1 0 

Ki 0 0 1 0 
1 0 0 1 

Kl 0 0 0 
1 0 0 

K~ 1 0 0 1 
0 0 0 I 

K1 0 1 0 0 
0 0 1 0 

Fig. 17 
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17, where also the real (not fictive) prescribed output changes are illustrated. A 
computer program [lOJ applying pair-wise the algorythm PARKOMP 
constructs the compatibility table and provides the maximal compatibility 
classes as follows: 

(1,2,3,4, 7, 8, 9, 12) (1,2,3,4, 7, 8, 12, 13) 

(1,2,3,4,7,11,12,13) (1,2,3,7,8,9,10,12) 

(1,2,3, 7, 10, 11, 12) (2,3,4,5,6, 7, 12) 

(2,3,4,6, 7, 8,9,12) (2,3,4,6,7,11,12) 

(2,3,6, 7, 8, 9, 10, 12) (2,3,6, 7, 10, 11, 12) 

The correspondence between the numbers and the output changes is shown in 
Fig. 15. 

IV. The definition of the states 

Every state of a control unit specified by B : K set or graph corresponds 
uniquely to a compatibility class of the prescribed output changes. These 
classes are disjoint and realise a closed cover of the prescribed output changes. 
The proof of the above statement [lOJ can be derived from the requirement 
that the mappings v" and Yy should distinguish the P and S sets of the 
prescribed output changes belonging to the same compatibility class with the 
help of the prescribed input changes only. 

Let the set of such compatibility classes be called a state-defining partition 
of the prescribed output changes. 

For example, a state-defining partition is in the case ofthe above maximal 
compatibility classes as follows: 

n= {(Ki Ki K~/lK~/2Ki Ki)(Kl K4K2)(K3Kj)} 

The three blocks define three states which will be denoted by the secondary 
combinations yl, y2, y3 respectively. Thus, in the example of Fig. 15.: 

Ai belongs to K~/1 and Ki 
A~ belongs to Kl 

Ai belongs to Ki 

A~ belongs to Kj 

A i belongs to K 2 

The B: K graph of Fig. 15 is drawn in Fig. 18 completed with the 
secondary changes. The dashed lines separate the values of the secondary 
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Fig. 18 

y' 

y2 

y' 

combinations yl, y2, y3. In the case of a phase-register structure, the dashed 
lines define the phases. 

It is obvious that in general, more than one state-defining partition may 
be found for a control unit. A state-defining partition can be considered as an 
optimal one, if it defines the smallest number of states and state-transitions. 
Before looking for the optimal solution, another property of a state-defining 
partition is to be considered. 
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Let the prescribed output change K; be called a junction-in output 
change ifthere exist the output changes Kf:" K~ ... K~ for which K; E K(Kf:,), 
K; E K(K~), ... K; E K(K~) are true. In this case, let Kf:" K~, ... K~ be 
called the junction-out output changes belonging to k; . 

All junction-out output changes belonging to the same junction-in 
output are in a common block of a state-defining partition. So, if a junction-in 
output change is incompatible with at least one of its junction-out output 
changes, then there exists no state-defining partition containing that junction­
in output change and its junction-out output changes in a common block. If a 
junction-in output change is compatible with all of its junction-out output 
changes, then it is in a common block of the state defining partition either with 
all of its junction-out output changes or with none of them. These statements 
can be proved [10J easily, because in the opposite cases, the secondary change 
could not be uniquely prescribed to the junction-in output change. For, it is not 
known yet during a junction-in change which junction-out will follow it. 

The junction-in and junction-out output changes are very easy to point 
out in the B: K table. For, in the column of a junction-in output change there 
are more than one output changes in row (K)K. These are the junction-out 
changes belonging to the junction-in change determining the column. 

So, in the example shown in Fig. 16 the junction-in and junction-out 
changes are as follows: 

Junction-in 

K~ 
K2 
Ki 
K~ 

Junction-out 

Kl,K4 
KV2,Ki 
Kl,K4 
Ki ,Kt 

Let it be examined, whether the state-defining partition 

re = {(KiKiK~/lK~/2KtKi) (KlK4KZ) (K3K~)} 

obtained in the example of Fig. 15 corresponds to the conditions of junction-in 
and junction-out changes. 

The second block contains Kl and K 4 ; in the first block, KY2, Ki and 
Ki, Kt are together. 

In consequence, to calculate an optimal state-defining partition, an 
optimal closed cover is to be determined starting from the maximal 
compatibility classes of the prescribed output changes. This cover is to be made 
disjoint whilst remaining closed minimizing the number of state transitions and 
avoiding the conflict with the above conditions of junction-in and junction-out 
changes. During this procedure, many variations may occur in making a cover 
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disjoint by leaving out output changes from a compatibility class. For an 
advantageous selection strategy, let the K': efficiency hi(K':) of a compatibility 
class Ri be introduced according to the following definition: hi(K':) is the 
number of the prescribed changes in the longest fragment of prescribed 
sequences which can be composed of the output changes-including K':­
contained by Ri . 

It is obvious that 
0::; hi(K':)::; I Ri I , 

where I Ri I denotes the number of elements in Ri . 
If Ri does not contain K': , then 

The meaning of hi(K':) = 1 is that Ri contains K': , but it does not contain any 
other prescribed output changes which could be composed to include K': in 
order to construct any fragments of prescribed sequences. 

If K': could be removed from more than one compatibility class of a cover 
preserving the closure property and avoiding the conflict with the junction-in, 
junction-out conditions, then in order to reduce the number of the state 
transitions, K': should be removed from those compatibility classes which have 
the smallest value of hi(K':). 

The proof of this statement [10] shows that if K': were removed from 
compatibility classes having not the smallest hJK':) then the number of the 
state transitions would always be equal or greater than it would be in the case of 
the smallest hi(K':). 

For example, let a closed cover of the maximal compatibility classes 
belonging to Fig. 15 be examined: 

RI =(KiKiKYIK~/2KiKi) 

R2 =(KiK~/IK3KjKI) 

R3 = (KIK 4 Ki) 

hI (K~/I)=4 because of the fragment K~/2KjKiK~/1, 

h2(K~/I)= 3 because of the fragment K~/lKjKI. 

So, K~/l is to be remowed from Rz . This removal preserves the closure 
property of the cover and results in the state-defining partition mentioned 
earlier. 

Unfortunately, it may occur that the B: K graph or set contains junction­
out output changes which belong to a common junction-in change and are 
incompatible. In such cases there is a conflict with the condition of junction-in 
and junction-out output changes and so, it is impossible to generate a state-
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K 12 23 25 32 51 43 31 24 

B(K) 12 24 23 43 31 54 51 35 
34 

(K)K 23 32 51 24 12 31 12 43 
25 23 

K(K) 31 12 12 23 25 24 43 32 
51 32 

(K)B 24 43 13 34 12 41 12 54 
23 35 

Fig. 19 

Fig. 20 

defining partition for such a form of the B': K graph or set. In order to eliminate 
this difficulty, the B: K graph and set are to be formally modified by 
introducing recurrent output changes. 

For example, aB: K table and the corresponding B : K graph are given in 
Fig. 19 and 20. The junction-out changes K~ and K~ are incompatible if 
K~ 11 K~ is not true, because 

B(K~)-l : dnB(K~): d = {X3} 7'=0. 
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K 12 23/1 23/2 25 32 51 43 31 24 

B(K) 12 24 34 23 43 31 54 51 35 

(K)K 23/1 32 32 51 24/2 12 23/2 12 43 
25 

K(K) 31 12 32 12 23/1 25 24 43 32 
51 23/2 

(K)B 24 43 43 31 34 12 41 12 54 
23 35 

Fig. 21 

Let K~/1 and K~/2 be introduced instead of K~ according to Ql = {Bi} and Q2 
= {Bj} of B(K~). 

The modified B: K set and graph is shown in Fig. 21 and 22, where K~/1 
and K~ are already compatible. 

Let an unambiguous B: K set or graph be called a canonical one if it is 
open and all of its junction-out changes belonging to common junction-in 
changes are compatible for every possible pair. 

K~ 12 

Fig. 22 



LOGIC CONTROL PROCEDURES 131 

The procedure for obtaining the canonical version of aB: K set is based 
on the step-by-step selection of the output changes which are to be made 
recurrent. 

The speed of convergence of the procedure [10J is influenced by the 
heuristic selection from the output changes which are to be replaced by their 
recurrent copies in each step. 

Having obtained the canonical B : K set, the method for calculating the 
state defining partitions provides the secondary changes A(K:) for every 
prescribed output change. 

K 12 13 23/1 3 34 43 4 42 2 23/2 24 31 

B(K) 12 13 24 36 45 54 57 71 16 67 65 71 
[65J 

K(K) 31 31 12 13 23/1 34 34 4 42 2 2 23/2 
3.34 24 

(K)K 23/1 3 34 34 43 34 42 2 23/2 31 43 12 
4 24 4 13 

(K)B 24 36 45 45 54 45 71 16 67 71 54 12 
[65J [65J 57 [65J 66 57 13 

A(K) 13 13 3 32 23 2 2 21 12 

Fig. 23 

Let A(K) denote the set of all secondary changes A (K:). Let B: K: A 
denote all of the sets B(K), K(K), (K)K, (K)B and A(K). 

For example, the B: K: A set belonging to Fig. 18 is shown in Fig. 23 as a 
so-called B : K : A table including also the fictive secondary changes. 

AB: K graph with the secondary changes can be considered as aB: K : A 
graph. So, Fig. 18 represents aB: K : A graph. 

AB: K : A graph can be called an optimal one if the number of states and 
state-transitions cannot be reduced whithout changing the corresponding 
canonical B : K graph. 

The method outlined in this paper for calculating the state-defining 
partitions has the same quality of optimality and straightforwardness as the 
well-known procedure [lJ for minimising the number of states of incompletely 
specified sequential circuits. 

Later in this paper, it is supposed that the B : K : A set or graph is given as 
a specification for the realisation of the control unit. The further steps are 
determined by the hardware structure and by the choice between a 
synchronous or an asynchronous mode of operation. 

As an example, the realisation steps will be summarised in the next 
chapter for the case of a synchronous phase register structure shown in Fig. 2. 
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v. Expressions for the realisation of the control 
unit specified by B : K : A set 

Let it be assumed that a prescribed output change K': occurs in the state 
I determined by a state-defining partition of the control unit. 

Let {~~} denote the set of the prescribed input combinations occurring 

_ . {causmg} m the state I and _ h-b- _ the output change K': -
m 1 lhng 

It is obvious that 
JmnTm=rIa n n YJ., 

because otherwise, it could not be decided, whether K': occurs in I or does not. 
This would conflict with the character of the state-defining partions which 
defines I_ 

Let {BK: Ik} denote the set of all prescribed {input } changes occurring 
: y output 

in the state l_ 
It can be proved [10J that the sets J': and T'; can be expressed as follows: 

1) If no real (fictive) secondary change belongs to K': , then 

J': = B(K':) : d 

B:I (B:/)-1:d 
T':= B(K':)UH(K':) :dU B(K':):d 

2) If a real (not fictive) secondary change belongs to K': , then 

J': = B (K':) : d 

B: I (B: 1)-1: d 
T': = B(K':)UE(K':): dU B(K':): d 

(1) 

(2) 

3) If the set B(K':) contains at least one prescribed input section change, 
then 

J': B(K':) : d 

m_ L 
Tn - B(K':): d (3) 

4) If no real (fictive) secondary change belongs to a fictive prescribed 
output change K n , then 

T,,=0 - (4) 

In the above expressions, the broken line indicates that the elements of the sets 
in the denominators must be left out of the sets in the numerator; E(K':) denotes 
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the union of all B(K~) sets for every K~ which is parallel to K':: and occurs also in 
1 with the same secondary changes as K'::; H(K'::) denotes the union of all 
B(K~) sets for every K~ which is parallel to K':: and occurs also in 1 ; L denotes 
the set of all prescribed input combinations, 

If the prescribed output change K':: occurs in the state 1 determined by a 
state-defining partition, then an identifying Boolefunction F'::(X) can be formed 
as follows: 

F'::(X) = 1 , if XEJ':: 

F'::(X) = 0 , if X ET':: (5) 

F'::(X) = -(don't care), if X 1= J':: and X 1= T':: 

Having formed the identifying functions for every prescribed output 
change, Boolean expressions can be constructed for the changing conditions of 
every output and secondary variable [10]: 

P 

Zi: 1 = L [m (I) , S(F Zi : I)J 
k= 1 

p 

Y;: 1 = L [m (I) , S(F yi : I)J 
k=l 

1';: 0= f [m(/) , S(F yi : I)J, 
k=l 

where 

Zi: 1 

Zi: O 
denotes the value of the logical (Boolean) function which is 1 

1'; : 1 

1';:0 

only if during a prescribed 

output 

output 

secondary 

secondary 

variable 

output 

output 

secondary 

secondary 

change, the value of the 

from 0 to II 
from 1 to 0 

changes j' from 0 to 1 ' 

from 1 to 0 
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p 

I denotes the logical sum of the expression between the symbols [ ] 
k=l 

according to k; 
p is the number of the secondary variables; 
the symbol· denotes the logical product (AND operation); 
m(/) represents the logical product of all secondary variables (y 1 ... Yi . .. Yp) 

containing {;;} if the value of Yi is g} in the secondary combination Y\ 

F k 
Zi:Y 

F-· vk 
Zi· • 

F 
k denotes the set of identifying functions belonging to such prescribed 

Yi:Y 

F- ·)Ik 
Yi· 

output 

output 
changes which occur in the state l and cause the change of the 

secondary 

secondary 

value 

from 0 to 1 

from 1 to 0 

from 0 to 1 

from 1 to 0 

of the 

output Zi 

output 
variable 

Zi 

secondary ~ 

secondary ~ 

S( ) denotes the logical function which is obtained by forming the logical sum 
(OR operation) of all functions contained by the set in the brackets. 

In the above expressions, the definition of the identifying functions is 
formally extended for the prescribed secondary changes. This interpreting is 
trivial, because every secondary change connected with an output change even 
if it is a fictive one. 

In the synchronous phase register structure outlined in Fig. 2 the 
secondary combinations are restricted being in I-from-n code. For that reason, 
m(/) can be replaced by the secondary variable Yk assuming that Yk = 1 in the 
state l. In consequence of this: 

~:O= I lj: 1, 
j*ci 

where I denotes the logical sum (OR operation) for every i differring fromj. 
j*ci 
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I i 

I I 
I I 
I I 
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I 

Ye ! : Vc , 

Fig. 24 

So, the expressions Y;: 0 can be neglected and the notation Y; can be used 
instead of Y;: 1: 

(6) 

p 

Y;= I [S(Fyi:l)' YkJ 
k=l 

The character of the above expressions involves a decomposition of the 
combinational part C in Fig. 2 as shown in Fig. 24. 

Every identifying function F~ can be considered as representing a partial 
dichotomy D~ [lOJ of prescribed input combinations as follows: 

D~= {(X E J~), (X E T~)}, 

where X E J~ and X E T~ denote all prescribed input combinations which are 
contained by J~ and T~ respectively. 

Two identifying functions F~ and F~ can be replaced by a single 
identifying function in the expressions Zi: 1, Zi: 0, Y;: 1, Y;: 0 if and only if [10J 

the prescribed output changes K~ and K~ occur in different states and 
- the ordered partial dichotomies D~ and D~ are compatible [4]. 

It also can be proved [10J that there is a compatibility relationship 
between F~ and F~ if they can be replaced by a single identifying function. The 
optimal cover, calculated from the maximal compatibility classes of the 
identifying functions, represents the few est identifying functions for the 

5 Periodica Polytechnica Electronica 31/3-4 
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realisation of the expressions Zi: 1, Zi: 0, 1';: 1, 1';: O. It is obvious that the 
realisation, based on this optimal cover of the identifying functions may reduce 
the number of outputs from the network CX in Fig. 24. This is especially 
advantageous if the combinational part is constructed from PLA or memory 
units. The decomposition shown in Fig. 24 may have another advantage in 
uniform realisation. For, the network CX is independent of the secondary 
variables and CY accomplishes simple two-level sum-of-products operations. 

For example, let the identifying functions be calculated for the B: K : A set 
in Fig. 19 assuming the output combinations shown in Fig. 17. 

(3): 
The sets J: and T: can be determined with the help of expressions (1), (2), 

Ji={X2} 

Ji = {X3} 

J~/l = {X4} 

J~= {X5} 

J~={X4} 

J 2 - .rX11. 4-l J 

J 2 ={X6} 

J~/2= {X7} 

J l- fXl( 
3-\ f 

J1={X5} 

T 2 = {X3 X 6 X 4 Xl X 7 X 51 
1 "'" f 

T 3 = (X2 X 6 X 4 Xl X 7 X 51 1 l ' , , , , f 

T 3/1 = fX 2 v3 X 6 Xl X 7 X 5). 2 l ,..tl, , , , J 

T~/2 = {Xl, X 5, X 6, X 2, X 3, X4} 

T l = fX 7 v5 X 6 X 2 X 3 X4} 3 l ,Ll, , , , 

T4 = {X7 Xl X 6 X 2 X 3 v4) 
1 "",..tl f 

Among the fictive output changes, there is only one (K 2) which must be taken 
into consideration, because the others are without secondary changes and so, 
they have no effect. 

Thus, the identifying functions are determined according to the definition 
(5) and the functions S(F 2i: i), S(F Zi: i), S(F Yi: /) can be obtained: 

S(FZ1 :yl)=Ft S(FZ1 :y3)=F~; 

S(FZl :y2)=F~+Fl 

S(F22:yl)=F~ 

SFZ2:.v l )=Fi+Fi 

S(F 23: yl) = Fi + F~/l + F~/2; S(F 23: y2) = F~ 

S(FZ3:yl)=F~; S(F23:y3)=F~ 

S(F 24: yl)=Fi; S(F 24: y3)=F~ 
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S(F 24: yl) F~/l + F~/2; S(F 24: y2) = Fl 

S(F Y1 : y2) = F 2 

S(F Y2: y1)= Fi; S(F Y2: y3) = Fj 

S(FY3:y1) F~/l+Fi; s(FY2:i)=Fl 
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Substituting into the expressions (6): 

ZI: 1 =FiYl + FjY3; ZI :o=(Fl+Fi).v2 

Z2: 1=FjYl; Z2: 0 =(Fi+Fib'l 

Z3: 1=(Fi+F~/2)Yl +FtY2; Z3:0=F~Yl +FjY3 (7) 

Z4: 1 =FiYl +FjY3; Z4: 0=(FVl +FV2)Yl +Fty2 

Yl=F 2Y2; Y2=FiYl+FjY3; Y3=(F~/1+Fi)}'1+FlY2 

Without detailing the steps of compatibility checking and covering 
algorythm, the disjoint blocks of the optimal cover of the identifying functions 
are as follows: 

RI: (Fi) 

R2 : (Fi) 

R3 : (F~/lFl) 

R4:(FjFi) 

Rs:(FjFi) 

R6: (F~/2) 

R7 :(F2 ) 

With the help of a simple algorythm [lOJ, a set of identifying functions 
(F I, F 2 ... F 7) can be constructed representing the original identifying 
functions contained in the blocks RI' R2 . .. R7 respectively. For example, F5 

represents F~ and Fi. So, F~ and Fi can be replaced by F5 in the expressions 
(7). 

Executing all of the possible substitutions b Fl, F2 ... F7 in the 
expressions (7): 

Zl:1=F4Ch+Y3); Zl:O=(F 3 +FS)Y2 

Z2:1=FsYl; Z2: 0 =(F 1 +F2)Yl 

Z3:1=(F2+F3+F6)Yl+F3Y2; Z3:0=F5Yl+F4Y3 (8) 

Z4: 1 =FIYl +F4Y3; Z4:0=(F3+F6)Yl +F3Y2 

Y1 =F7Y2' Y2=F4(Yl +Y:,), Y3=(F3+F2)Yl +F3Y2 

Applying the identifying functions F\ F2, . .. F7 instead of the original 
ones, the number of outputs of the network ex (Fig. 24) can be reduced from 10 
to 7. 

5* 
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Xl X 2 X3 X4 Xs X6 X, 

Xl 0 0 I 0 0 0 0 
X2 I 0 I 0 0 I 0 
X3 0 0 0 0 0 0 I 
X4 I 0 0 0 I 0 0 
X5 I I I 0 I I 0 
X6 I I I I I 0 I 
X' I 0 I I I I I 

Fig. 25 

i n 

~ •• o, 
Z2+ Z,1 

i I r X3Xs =Ol 
n 

tX,X 3=OOn 

Z 2~Z3+Y3+ y, 

Z3 tZ"Y3+ 

y, 

Fig. 26 
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The realisation of the identifying functions Ft, F2
, • •• F7 can be 

accomplished easily, because the sets Ji and Ti are given according to the 
definition (5). Assuming the prescribed input combinations shown in Fig. 25, 
one of the possible methods [9] yields the solution as follows: 

1 -F =XSX6 

3 -F =X3X S 

F4=X2X 6 
S -F =X1 

6 -F =X2X 4 

F7 =X2X 4 

Introducing the above solution into the expressions (8) 

Z1: 1 =X2X 6(Y1 +Y3); Z1 :O=(X3X S+X1)Y2 

Z2: 1=X1Y1; Z2:0=(XSX6+X3XS)Y1 

Z3: 1 =(X1X 3 +X 3X S +X2X 4)Y1 +X3X SY2 

Z3: 0 =X1Yl +X2X 6Y3 

Z4: 1 =XSX 6Y1 +X2X 6Y3; 

Z4:0=(X3XS+X2X4)Y1 +X3X SY2 

Y1 =X2X 4Y2; Y2=X2X 6(Y1 +Y3); 

Y3=(X3XS+X1X3)Y1 +X3X SY2 

The flow chart in Fig. 26 can be considered as a graphical illustration of 
the above expressions, but it does not specify uniquely the control procedure 
unless we know the prescribed sequences of the input and output changes. 

VI. Special features of the method 

VI.l. Applying an output decoder 

If the hardware structure stores the output combinations, then an output 
decoder placed after the output flip-flops may reduce the number of blocks in 
the optimal state-defining partitions. The reason for this is that the storing 
effect of the output flip-flops can contribute to the representation of the states 
and so, less secondary combination may be required to distinguish the states. 
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Based on the algorythm PARKOMP, we can say, which incompatibility 
situations between K'; and K~ would turn into compatibility, if the 
relationships K':IIK;, K':IIKpK;11 K" were valid. These extra conditions for the 
output codes are to be fulfilled at the input of the output decoder. Thus, the 
specification of the output decoder should ensure the optimal output 
combinations (at the input of the output decoder) to be checked by 
PARKOMP. Obviously, conflicts may arise, since these conditions are to be 
fulfilled simultaneously. Thus, some trial-and-error steps may be unavoidable. 
However, the procedure for calculating the optimal state-defining partition 
[10J makes these steps easy to execute. For example, let K':IIK; and K;IIK~ be 
true separately. In this case, K':IIK; and K;IIK~ cannot be ensured 
simultaneously by any assign-variations of output combinations if and only if 
m=s and n = t [10]. 

VI.2. Handling of incompletely specified input and output changes 

A prescribed combination is incompletely specified ifit has at least one bit 
which is not specified (don't care). Thus, an incompletely specified combination 
represents several completely specified combinations. It is obvious that using 
incompletely specified combinations, a more concise initial description can be 
obtained for a control procedure, because the B: K set formally consists ofless 
elements. 

If the state-defining partition is determined applying incompletely 
specified input changes, then during the calculation the sets J': and T': may 
become not disjoint. For example, if 

Xl X 2 X3 v X5 .Il.4 

xj: 0 

Xh: 

and 
Xi E J': X h ET':, 

then the input combination 10111 would be contained by both J': and T': 
which is a contradiction. In this case, the incompletely specified input changes 
xj and X h are said to be unseparated [10]. In such cases, the state-defining 
partition can be made suitable for the realisation in a heuristic way by 
removing states from the blocks, where the not separated pairs occur, and 
forming new blocks. 

This heuristic step is avoidable if even during the execution of the 
algorythm PARKOMP, the unseparated input combinations are taken into 
consideration. 
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In this case, the output combinations K'; and K~ are always considered to 
be incompatible if the sets B(K';) : d and B(K~) - 1 : d or B(K';) - 1 : d and B(K~) : d 
are unseparated. In this way, the optimality of the state-defining partition is 
impossible to ensure, but the concise description may compensate for this 
disadvantage. 

The incompletely specified output changes do not cause any contra­
dictions during the design procedure and the unspecified bits are fixed at the 
end in the most economic way. Besides the concise description, another 
advantage is that the incompletely specified output changes may simplify the 
functions S(F Zi : l) and S(F Zi : l). For example, the identifying function of an 
incompletely specified output change K~ can be left out from the sums S(F Zi : l) 
and S(F Zi: l) if Zi is unspecified in zr [10]. 

W.3. Handling of the prescribed input and output sequences given 
in separate fragments 

In the B: K table or set, the continuity of the changes can be represented 
- if not otherwise defined - by the indices of the adjacent changes. If the initial 
definition of the control procedure is given by separate fragments of the 
prescribed changes, then they can be joined together by defining extra input 
section changes between the separate fragments. In this case the continuity of 
the output changes also must be ensured by defining additional output changes 
between the fragments. 

Obviously, these extra prescriptions affect only the changes which are not 
mentioned in the initial definition of the control procedure. Therefore, in this 
way, a kind of fixing of the "don't care" situations is carried out. 

The rules for the calculation of the B: K table provide a systematic 
method for determining the changes which are not excluded in the initially 
empty cells of the B : K table. The selection from the possible solutions is to be 
performed by checking the resulting specifications in order to fix the few est 
initially unspecified situations. 

For example, it is advantageous if the initially empty cells of the B: K 
table are filled with at most one extra change. The simplest resulting 
specification will be obtained if the least and the shortest prescribed sequences 
are formed, starting and finishing with the initial input combinations. In this 
way, the specification for the synthesis procedure may also become more 
rigorous than the original one, but it is not necessary to form a coherent 
specification by intuition. 
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VII. Examples for illustration 

At the Department of Process Control of TU Budapest, a design 
program-package has been developed for testing the method outlined in this 
paper. The self-contained parts of the program-package can be joined together 
in an interactive way. The main parts execute the following design steps: 

- the construction of the canonical B : K set and graph on the basis of 
the fragments of prescribed input and output changes, 

- the algorythm PARKOMP and finding an optimal cover for the 
prescribed output changes, 

- the calculation of an optimal state-defining partition, 
- formulating the logic expressions for uniform hardware structures. 
The main steps of the method are summarised by the flow chart in Fig. 27. 

Example 1 

As an example of the method and the usage of the program package, let 
the control unit of the system shown in Fig. 28 be considered. The prescribed 
function of the control unit is as follows: 

- The information INFI and INF2 from the devices PI and P2 is 
transferred to the output INF depending on the value of the selection signal V. 
If V= I then IN F I will be loaded into the register by the value RB = 1. 

The signals SI; and K; from the devices PI and P2 respectively are 
handshaking-pairs. K; = I is acknowledged by SI; = I only then, when the 
information is already stable on the lines IN F; . 

- The control unit starts the devices PI and P2 by the signals STI and 
ST2, respectively depending on the value of the signal pv. (PV= I assigns PI). 

The starting is initialised by a demand from the environment represented 
by the value KR = 1. The handshaking-pair of KR is the signal KR V 
acknowledging the demand of the environment of the system. 

The control unit produces K = I for the environment if the information 
from the device, assigned by pv, is already stable on the lines IN F. The values K 
= and PV must not change until a new KR = I occurs: 

- If KR = 1 occurs while the control unit is still processing the effect of an 
earlier KR = I received for the opposite device, then the control unit must 
respond to the environment by the busy signal F = I instead of KRV= 1. In this 
case the processing of the earlier KR = 1 must be completed without any 
disturbance, but subsequently, the value KRV= 1 must be transmitted to the 
environment. This KRV= 1 represents the message to the environment that the 
selection, rejected earlier by the busy signal, is now possible. 

- If KR = I occurs while the control unit is still processing the effect of an 
earlier KR = 1 received for the same device, then the processing of the earlier 
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5T 5T1 

Control unit 
P1 

5Tz INF1 
Kz 

v RB 

INF 

Fig. 28 

PV PV 5T1 

K1 
KR 

BKR Internal 

~ 
Control 5Tz 
unit 

F Kz 
BF 

KRV RB .. 
K V .. 

Fig. 29 

KR = 1 must be completed without any disturbance, but instead of producing 
K = 1 the control unit must perform a new start for the same device. After 
having processed the new start, the control unit must send K = 1 as usual unless 
during the processing, there occurs no KR = 1 for the same device. 

- The above specification prescribes the following handshaking pairs: 

STI-Kl 

ST2-K2 

KR-KRV,F(K) 

The signal RB is supposed to be a pulse. K = 1 is acknowledged by KR = 1, but 
K has no effect to the further changes of KR. So, the handshaking relation 
between K and KR is not mutual. 

The control procedure can be simplified by introducing the internal 
control unit with extra gates shown in Fig. 29. 
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Signals Xl Xz X3 X4 

Com- PV BKR Kl Kz binations 

Xl 0 
XZ 1 
X3 1 0 
X" 0 0 
X' 1 0 1 0 
X6 0 0 0 

Signals Zl Zz Z3 Z .. Z5 Z6 Z7 
Com-

BF KRV K binations STI S72 RB V 

Zl 0 0 0 0 0 
ZZ 1 I 0 0 0 0 
Z3 0 0 0 0 0 
Z4 0 0 1 0 0 1 
Z5 0 0 0 1 0 0 
Z6 0 0 1 0 1 1 
Z7 0 0 0 1 1 0 
Z8 0 0 0 0 

Fig. 30 

In the initial state the values BKR = K 1 = K2 = KO and BF = KRV= ST1 
=ST2=RB=0 are assumed. In the initial state the signals PVand Vmay have 
"don't care" values. 

Defining the prescribed input and output combinations according to Fig. 
30, the B : K graph of the control procedure is shown in Fig. 31. 

The maximal compatibility classes calculated by the program are as 
follows: 

(1,9) (1,10) (2) (3) (4) (5,6) (5,8) (6,7) (7,8) 

F or the sake of a simple formal description, the prescribed output changes are 
represented by the numbers 1 ... 10 according to the correspondence shown in 
Fig. 31. 

It can be seen that the program establishes incompatibility between the 
junction-out changes 3 and 4 related to the commonjunction-in output change 
2. The reason for this is that Bi and Bt are unseparated because of the "don't 
care" bits. In such cases, the algorythm PARKOMP at first formally excludes 
the compatibility relation between the prescribed output changes affected by 
the unseparated input changes. The incompatibility of 9 and 10 can be 
explained in the same way. 
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However, it can be seen from the prescribed function of the control unit 
that the relationships 3", 4, 2", 4, 2", 3, 9", 1 0 do not cause any contradictions 
and so, they can be allowed during the compatibility checking. The program 
has an interactive possibility for predefining compatibility relations before 
executing the algorythm PARKOMP. Doing this for the above relationships, 
the following new maximal compatibility classes are obtained: 

(1,9, 10) (2,3,4) (5,6) (5,8) (6, 7) (7,8) , 

where there are no further contradictions arising from the conditions of 

82 
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junctions-in and junction-out output changes. The program provides the 
optimal state-defining partition: 

(1,9, 10) (2,3,4) (5,6) (7,8) 

Assuming a synchronous phase register structure, the optimal B : K : A graph is 
shown in Fig. 32. 

Without detailing the steps for the calculation of the identifying functions, 
their optimal cover and the sums S(F Zi: l), S(F Zi: l), S(F Yi: l), let only the 
expression Zi: 1, Zi: 0, 1';: ° be listed: 

BF:1=BKR·yz; BF:O=BKR·Yl 
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KRV: 1 =BKR· Yl; KRV: O=BKR· Y2 

K:l=Y4; Kl:O=BKR'Yl 

STl : 1 =PV BKR . Y2; STl: 0= Y4 

ST2:1=PVBKR'Y2; ST2:0=Y4 

RB: l=(PVKl'K2+PV'Kl'K2)'Y3; RB:0=Y4 

V: 1 =PV BKRY2 V: O=PV· BKR· Y2 

Y1 =Y4 

Y2=BKR' Yl 

Y3=BKR· Y2 

Y4 =(PV Kl . K2 + PV Kl . K2)' Y3 

Example 2 

AB: K graph is given in Fig. 33. Let the state-defining partition be 
determined assuming the prescribed input and output combinations shown in 
Fig. 34. 

B; 

12 
K, CD 
I 

~ B~ 

T 
K3; ,2 , 0 K~ ® , 
B2 B~ , 
I I 
K~ ® K: Q , , 

f1 
Kif. I' , ® 

B~ , 
K' 3 (j) 

Fig. 33 
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Signals Signals 

Com- Xl X2 X3 Com- Xl X2 X3 
binations binations 

Xl 0 0 0 Zl 0 0 0 
X2 0 0 I Z2 0 0 1 
X3 0 1 0 Z3 0 1 0 
X4 0 1 0 Z4 0 1 1 

Z5 1 0 0 

Fig. 34 

B~ 

® 

Fig. 35 

The program calculates the following maximal compatibility classes: 

(1,2,4,6, 7) (1, 2, 5, 6, 7) (1,3,4, 7) , 

where the junction-out changes 2 and 3 related to the junction-in change 1, are 
not in a common compatibility class. 

It means that the B : K graph is not a canonical one. The problem can be 
avoided by introducing recurrent changes instead of K~/l. The modified B : K 
graph is shown in Fig. 35 which yields new maximal compatibility classes by 
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restarting the program: 

(1,2,3,4, 7) (1,.2, 4,6, 7, 8) (1, 4,5,6, 7) 

The program provides two state defining partitions: 

(1,2,3,4) (6, 7, 8) (5) 
and 

(1,2,3,4, 7) (6,8) (5) 

Example 3 

AB: K graph is given in Fig. 36. Let the optimal B: K : A graph be 
constructed assuming the prescribed input and output combinations shown in 
Fig. 37. 

8 2 8 2 

/ 
83 8 3 

\ 
CD K,3 K2 ® 

I I' 
85 83 2 

I I 
CD K3 

I 
K; ® 

~ 
I 

® K~ 
j 

Fig. 36 
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ignals ignals 

Cornbi- X X X X Cornbi- ZI Z2 Z3 Z4 
nations nations 

X 0 0 1 0 ZI 0 0 0 0 
X2 1 0 1 0 Z2 I 1 0 0 
X3 0 0 0 0 Z3 1 0 1 0 
X4 1 0 0 0 Z4 I 0 0 1 
X5 1 1 1 0 Z5 1 0 1 1 
X6 1 1 1 1 Z6 0 0 1 1 
X7 0 1 1 1 
X8 0 I 0 0 
X 9 1 0 1 I 

Fig. 37 

The maximal compatibility classes of the prescribed output changes are: 

(1,2,3,4, 10) (1,2,3,5, 7, 10) (1,2,5,8) (2,3,5,6, 7) 

(2,5,6,8) (6,8,9) . 

The program provides an interactive possibility for checking the closure 
property of a disjoint cover chosen by intuition. In this case there is a relatively 
large number of possible ways offorming optimal state-defining partitions. Let 
the solution below be tested to determine, whether it could be a state-defining 
partition or not: 

(1,2,4, 10) (3,5,6, 7) (8,9) 

These compatibility classes do not realise some compatibility relation­
ships contained by the maximal compatibility classes: 2 - 3, 6 - 8, 6", 9, 7 -10. 

The question is, whether these neglected relationships would make the 
cover unclosed ot not. 

The program can be used for this test by restarting it after having 
prescribed the neglected relations as incompatibility relationships for the 
algorythm PARKOMP. 

As a result, new maximal compatibility classes are obtained: 

(1,2,4, 10) (1, 2, 5, 7) (1, 2, 5, 10) 

(2, 5, 6, 7) (1,3,4, 10) (1, 3, 5, 7) 

(1, 3, 5, 10) (1, 5, 8) (8, 9) (3,5,6, 7) , 

where each compatibility relationship of the solution, chosen by intuition, is 
realised. Thus, the neglected compatibility relationships do not exclude the 
existence of the compatibility classes chosen by intuition. 

6 Periodica Polytechnica Electronica 31/3-4 
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Yl 

Y1 

Therefore the closure property is proved and the solution can be 
considered as a state-defining partition that yields the B : K : A graph shown in 
Fig. 38. 
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