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Summary 

The voltage and current of a quasi-TEM mode have been defined as linear functionals of 
the electric and magnetic field in the two-conductor waveguide. The functional has been chosen 
so that the error that arises by neglecting the higher modes generated at the junction of two 
different waveguides is as small as possible. A new definition of the characteristic impedance has 
been given by means of the so defined voltage and current. 

Introduction 

If the electromagnetic field of a lossless two-conductor waveguide is a 
pure TEM mode, the wave propagation can be described by means of the 
transmission-line theory. In this case the waveguide of a given length can be 
characterized as a two-port. The inductance and capacitance per unit length, 
denoted by Land C, resp. determine the parameters of this two-port through 
the phase constant and the characteristic impedance. 

TEM mode occurs only in waveguides over the cross section of which the 
product of the permittivity [; and the permeability J1 is constant. If this condition 
is not fulfilled, only quasi-TEM (qTEM) mode can propagate in the waveguide. 
The theory of transmission lines is usually applied in this case, too, because the 
qTEM mode turns into TEM mode at zero frequency, but this procedure is 
acceptable at low frequencies only. A better approximation is achieved, if the 
phase constant in the two-port parameters is not substituted by the value f3 = 

= wyIz:C resulting from the theory of transmission lines, but by its exact value 
resulting from the solution of the eigenvalue problem related to the waveguide. 
Similarly, the characteristic impedance is not substituted by the value 20 = 

= jLjC given by the theory of transmission lines. The characteristic 
impedance considered as more exact is defined in many different ways. The two 
definitions mostly used in the literature, one of which is based on the effective 
permittivity [lJ and the other on the transferred power [2J, sharply contradict 
each other. The different definitions conduced to polemic [3J-[6J with 
ambiguous conclusions, because neither the theoretical basis nor the practical 
purposes were clearly formulated. 
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The application of the transmission-line theory in the case of qTEM 
modes has several practical advantages, but the results are not exact, because 
the higher modes generated at the junction of two different waveguides cannot 
be taken into account, though they have an important role in the fulfilment of 
the boundary conditions. In this paper the theory of transmission lines is 
generalized in such a way that the results have the smallest error possible in the 
case of qTEM modes. This generalization includes, of course, a new definition 
of the characteristic impedance, which is more deeply justified by the theory 
than the old ones and gives the same result as the definition based on the 
effective permittivity, if the scalar valued permeability is constant over the cross 
section. 

Quasi-TEM modes and the theory 
of transmission lines 

The theory of transmission lines defines two scalar quantities, a voltage 
and a current in every cross section of a waveguide used in TEM mode. This 
cannot be done so simply at qTEM modes, because the integrals of the electric 
and magnetic field strength along curves connecting the two conductors and 
enclosing one conductor, resp. depend upon the choice of the curve in the given 
cross section. 

With the aim of generalizing the definitions of the previously mentioned 
two scalar quantities, all the waveguides having a given doubly connected 
region A as cross section are considered simultaneously. These waveguides 
differ in the functions describing the permittivity and permeability over the 
cross section. It suffices to consider the transversal component ET and HT of the 
electric and magnetic field strength, resp. because the longitudinal components 
are also unambiguously determined by them. The functions ET and HT are 
regarded as elements of the Hilbert space ;jf of the vectorial functions square 
integrable over the region A with the usual inner product 

(u, v)= S u*v dA. (1) 
A 

It is a natural generalization that the voltage U and current I belonging to ET 
and HT' resp. are defined as linear continuous functionals on the Hilbert space 
.7(. It is known that such functionals can be written in the form of inner 
products: 

(2) 

Now the adequate vectors u and i must be found. The first postulate is 
that the functionals defined by (2) should give the usual voltage and current at 
zero frequency. As it is proved in Appendix I, it follows from this that the vector 
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i has no normal component along the boundary curves of the region A and 

div u=O div i=O (3) 

f (nxu)dL=l S (ixn)dL=l, (4) 
L, L2 

where n denotes the unit vector normal to the cross section A, Ll is an arbitrary 
closed curve enclosing one conductor and L z is an arbitrary curve connecting 
the two conductors. 

The functionals defined by vectors u and i satisfying the relationships (3) 
and (4) can be given direct interpretation. As it was mentioned, the integrals of 
the electric field strength of a qTEM mode along curves connecting the two 
conductors give different values for different curves, and integrals of the 
magnetic field strength behave similarly. The voltage and current defined by 
relationships (2) signify the mean of these different values in the following sense. 
Let us fix the lines of force of the vector field u in the usual manner, i.e. the flux 
between any two lines offor<.:e should have the same value. Let us integrate the 
vector ET along these lines of force. If the density of the lines of force is increased 
beyond any limit, the mean value of these integrals converges to the voltage U 
defined by (2). The current 1 defined by (2) can be interpreted similarly, if the 
lines of forces of the vector field i are used at the averaging. It has to be noted 
that the power transferred by the qTEM mode can be calculated only 
approximately on the basis of U and 1 except at zero frequency, where they give 
the exact power. 

In the following, the curl of the vectors u and i will be determined 
considering the principles mentioned in the Introduction. Let us investigate the 
electromagnetic field in two joined waveguides. They are assumed to have the 
same cross section A, but the functions describing the permittivity and 
permeability over their cross sections are different. At the junction higher 
modes appear beside the qTEM mode excited from outside. These modes are 
rapidly damped at frequencies used in qTEM lines. That is why it does not give 
rise to grave error that the theory of transmission lines cannot take into 
account the higher modes. The subscripts 1 and 2 will refer to the two 
waveguides, and so let us denote at the junction of the two wave guides the 
transversal components of the field strengths of the qTEM mode by ET!' HT! 
and En, Hn, resp. and the transversal components of all the higher modes 
together by eT!' hT! and en, hn, resp. In consequence of the boundary 
conditions 

(5) 

.,* 
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The theory of transmission lines does not describe the boundary conditions by 
the accurate equations 

(u, En) + (u, en) = (u, En) + (u, en) 

(i, HTd+(i, hn)=(i, Hn)+(i, hn ) 

derived from (5), but by the approximating equations 

U 1 = U 2 l.e. (u, En)=(u, En) 

11 = 12 l.e. (i, HTd = (i, Hn ), 

(6) 

(7) 

which arise, if the higher modes are neglected. These equations would be exact 
only if the inner products (u, en), (u, en), (i, hn ) and (i, hn ) equalled zero. 
Unfortunately, such vectors U and i do not exist. Accordingly, the vectors u and 
i have to be chosen suitably so that the absolute values of these inner products 
should be as small as possible. 

It is proved in Appendix Il that if U and i satisfy the conditions already 
formulated, the previous four inner products always vanish at zero frequency. 
So Eqs (7) are acceptable approximations ofEqs (6) at properly low frequencies. 
The error of these approximations is small, if the quantities 

I 
(u, eT) I m·= 

J (u, ET) 
.= I (i, hT) I 

nJ (' H .) , 
I, TJ 

j= 1, 2 (8) 

are small. These quantities have the following bounds: 

j= 1, 2. (9) 

These upper bounds and with them the error of the approximation are reduced 
for all the possible vectorial functions eT j and hT j' if u and i are chosen so that 
the quantities 

j= 1, 2 (10) 

are as large as possible. 
According to Appendix III t 1 is maximum, if curl i = Cl curl HT 1 with an 

arbitrary constant Cl' Similarly, t2 is maximum, if curl i=c 2 curl Hn , which 
contradicts the previous condition except at zero frequency, where curl Hn = 

curl Hn = O. So the choice curl i = 0 is the most advisable, because it 
guarantees that the values t 1 and t 2 are near the possible maxima, at least if the 
frequency is not too large. It follows similarly from Appendix III that u is 
advisably chosen so that it has no tangential components along the boundary 
curves of the cross section, and curl u = O. 
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In consequence of the previous statements vectors u and i must fulfil the 
relationships 

div u=O curl u=O 

div i=O curl i=O 
(11 ) 

and the relationships (4), furthermore the tangential component of u and the 
normal component of i must vanish along the boundary curves of the cross 
section. It is obvious that vectors u and i describe the electric and magnetic field 
of the waveguide in the case of constant permittivity e and permeability 11. In 
consequence of relationships (4) the charge per unit length equals e for the 
electric field u, and the flux per unit length equals 11 for the magnetic field i. The 
two vectors can be expressed in terms of each other as follows: 

i= 
nxu i x n 

U=--. (12) 

J udL fidL 
L2 L, 

So. it suffices to determine one of the vectors u and i. 

Definition of the characteristic impedance 

If the permittivity and permeability are scalar quantities, and if the z axis 
is parallel to the direction of propagation of the qTEM mode, the transversal 
components of the electric and magnetic field strength depend on the co­
ordinate::: in the following way: 

ET(z)=E+ exp(-J{3:::)+E- exp(j{3z) 
(13) 

where 

(14) 

and r is a scalar constant. In this case the following equations arise from the 
definition (2) of the voltage and current: 

U(z)=U+ exp (-J{3z) + U- exp(j{3z) 

U+ U-
1(z)= Zexp(-J{3z)- Zexp (j{3z), 

c c 

(15) 

where 

(16) 
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and Eq. (16) gives obviously the definition of the characteristic impedance. 
Relationships (15) are the most important equations of the transmission-line 
theory, and they, together with all their consequences can be applied to the 
qTEM modes in the approximation previously detailed, if the characteristic 
impedance is defined by Eq. (16). 

The following formulae can be derived from definition (16) on the basis of 
Eqs. (12) and the relationships between E + and H +: 

(17) 

Zc = co (i: flH+) . 

~ il i dL (I, H ' ) 
(18) 

Here the curves Ll and L2 have the same meaning as before. This formulae give 
a very simple relationship for the frequency dependence of the characteristic 
impedance, if either the permittivity or the permeability is constant over the 
cross section. If the permeability is constant, the inductivity per unit length is 
given by the following formula: 

L= _1_/_. 

, i dL 
LI 

It follows from Eqs. (18) and (19) that the relationship 

Ceff(O) 
--( - , fl = const. 
ceff co) 

(19) 

(20) 

describes the frequency dependence of the characteristic impedance, where v 
denotes the phase velocity, and Ceff denotes the effective permittivity defined in 
the usual way. If the permittivity is constant over the cross section, the formula 

C c=--- (21) 

gives the capacitance per unit length. It follows from Eq. (17) and (21) that the 
frequency dependence of the characteristic impedance is described by the 
relationship 

C=const. (22) 
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In these cases Denlinger [lJ defines the characteristic impedance through 
the formulae (20) and (22) on an intuitive basis. If both 8 and f.! vary over the 
cross section, the definition of Denlinger differs from that one suggested in this 
paper, because his definition was formulated only in an intuitive way. Eq. (20) 
gives one of the two generally used definitions of the characteristic impedance 
of microstrips. The ideas presented in this paper are new arguments for this 
definition and against the other definition based on transferred power. 

The reflection coefficient is an important characteristic of the wave 
propagation. Its value is determined in the theory of transmission lines by 
means of the characteristic impedance. The error of the so calculated reflection 
coefficient is now investigated in the case already treated, i.e. for two 
waveguides of the same cross section that are connected one after the other. Let 
us fix the point z = 0 at the junction of the two waveguides and define the 
quantities 1'1 and 1'2 by Eq. (14), i.e. El =1'1 Et and E2 =rzE;, which means 
that at the junction ETj= (1 + r)Et . If the first waveguide is excited, the value of 
1'2 is determined by the termination of the second one. Though generally it is 
not easy to calculate 1'2' its value is assumed to be known. Let us introduce the 
following new notations: 

Z = (u, ET2 + eT2 ) 

(i, HT2 + hT2) 

(23) 

(24) 

The quantity Z can be interpreted as an impedance loading the first waveguide. 
and can be expressed as: 

Z = 1 +I'z +Pz Z 
c2' 1-1'2 +qz 

With these notations the reflection coefficient 1'1 can be expressed as: 

(25) 

(26) 

In the theory of transmission lines the quantities Pj and qj are assumed to equal 
zero, which is an important facility, because it is very difficult to determine 
them. The vectors u and i were exactly defined so that the absolute values of Pj 
and qj should be as small as possible, which guarantees that the errors of the 
loading impedance and the reflection coefficient 1'1 calculated on the basis of 
the transmission-line theory are small except in the case of l' z:::::: - 1 or l' z :::::: 1. If 
l' 2:::::: - 1, the relative error of Z is large, but it does not cause large error in 1'1 ' 
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unless if Z and Zc1 are of the same order, i.e. ZCl ~ ZC2' Similarly, the error ofr 1 

is large, ifr2~1 and Zc1~Zc2' but otherwise it is small. 
In the foregoing considerations the two waveguides were assumed to be 

of the same cross section. The relationships of the transmission-line theory are 
also used, if the two cross sections are different. The presented ideas and 
especially the interpretation of the voltage and current related to the qTEM 
mode guarantee that this approximation gives also satisfactory results with the 
characteristic impedance defined in this paper, if the two cross sections differ 
slightly. 

Appendix I 

At zero frequency the transversal electric field of a qTEM mode in a fixed 
cross section can be expressed as 

ET = - grad <p 

in terms of a potential <p that equals zero along the outline La of one conductor 
and equals a constant value U 1 along the outline 1-,. of the other conductor. So 
the functional U defined by (2) must have this value U l' from which the 
following relationship results after simple transformations: 

U 1 = U 1 f (0 x u) dL + S <p div u dA, 
L, A 

where 0 denotes a unit vector normal to the cross section A. This relationship is 
true for every possible <p only if 

divu=O 1, (nxu)dL=l 

Obviously, Ll can denote here any closed curve enclosing one of the 
conductors and not only the outline of the conductor. If the region A is cut 
along a curve L2 connecting the two conductors, the transversal magnetic field 
can be similarly expressed as gradient of a potentIal, which has a jump of the 
same value 12 at every point of the curve L 2 , if the curve is crossed. The 
functional I defined by (2) must have this value 12 , from which it follows that the 
vector i fulfils the conditions 

divi=O S (ixo)dL=l, 
L2 

and it has no normal component along the boundary curves of the region A. 
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Appendix 11 

The vectors en and en figuring in Eqs. (5) are composed of the 
transversal electric fields of the higher modes. Either the electric or the 
magnetic field of these modes vanishes at zero frequency. If the magnetic field 
equals zero, the electric field can be expressed as 

e=(eT + ez") exp (± ,'z), 

where the unit vector n and the z axis are normal to the cross section, eT and ez 
do not depend on z, and eT" = O. As at zero frequency curl e = 0, 

+/eT + grad ez=O. 

MUltiplying this equation by vector u* and integrating it over the cross section, 
yields after some transformations: 

±i' J u*eT dA = J div (ezu*) dA - J ez div u* dA. 
A A A 

In consequence of Gauss's theorem the first integral on the right-hand side 
equals zero, because ez=O along the boundary curves of the region A. The 
second integral equals also zero, if div u =0. As in case of higher modes i' >0 at 
zero frequency, it is proved that the inner products (u, en) and (u, eTZ) vanish at 
zero frequency, if div u = O. It can be proved similarly that the inner products 
(i, hT1 ) and (i, hn ) vanish also at zero frequency, if div i = 0, and the vector i has 
no normal component along the boundary curves of the cross section. 

Appendix I I I 

The solutions of two extreme value problems are presented in this 
Appendix. Let us denote by lit the Hilbert space of the two dimensional 
vectorial functions square integrable over the doubly connected region A, by (;71 
the linear subspace of lit that contains the solenoidal vectors of lit and by f 
the linear subspace of (;71 containing all the vectors that have no normal 
component along the boundary curves of A. v is an element of the Hilbert space 
lit, the curl of which is defined in the whole region A. The elements u of the 
subspace :Jlf and the elements i of the subspace f have to be determined for 
which the quantities s I(u, v)l/llull and t= I(i, v)I/llill are maximum. 

Let us denote by Vu and Vu the projection oh in the subspace (;71 and in the 
one dimensional linear subspace defined by an element u E U, resp. Obviously 

s= I(u, v)I/lIull = Ilvull ~ IIvull 
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and Ilvull = Ilvull, if and only ifvu =vu' Hence 5 is maximum, ifu is element of the 
one dimensional linear subspace defined by Vu' It will be proved that 

curl Vu = curl v, 

the tangential components of Vu and v are equal along the boundary curves of 
region A, and the integrals ofvu and V are equal along an arbitrary curve that 
connects the two boundary curves of the doubly connected region A. 

If v is given, the previous conditions with the equation div Vu = 0 
determine unambiguously the vectorial function Vu. It follows from these 
conditions that the difference V - Vu can be expressed as 

v-vc=grad P 

in terms of a function P that equals zero along the boundary curves of A. 
Simple transformations lead to the following relationship: 

(v-v l ·, vc)= J div (P*vu) dA - J P* div Vu dA. 
A A 

The two integrals on the right-hand side vanish because of Gauss's theorem 
and the relationship div vc=O. from which it follows that Vc is really the 
projection of V in the subspace 41. 

Similarly, the quantity t is maximum ifi is element of the one dimensional 
linear subspace defined by VI' the projection ofv in the subspace f It can be 
proved similarly that 

curl VI = curl v, 

and the integrals of v I and v around any closed curve in the region A are equal. 
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