
ABSTRACT EXECUTION OF PROGRAMS

J. SARBO

Department of Measurement and Instrumentation Engineering,
Technical University H-1521, Budapest

Received June 15, 198"5
Presented by Prof. D. L. Schnell

Summary

Compilation time analysis of programs is usually incomplete. One of the basic methods for
static determination of the program's dynamic properties is symbolic execution.

Symbolic execution still fails to satisfy practical requirements, mainly because of the high
execution time and memory requirement, theorem proving and program termination problems.

In this paper new methods are presented which can make symbolic execution applicable in
everyday work, e.g. in programming microprocessor equipment.

Introduction

Compilation time analysis of programs is usually incomplete. One of the
basic methods for static determination of the program's dynamic properties is
symbolic execution [6]. Some experimental systems based on symbolic
execution were developed in the past [lJ, [4J, [5]. Abstract program evaluation
is also considered to be a technique of symbolic execution, where the program
is executed with abstract values of program variables.

Symbolic execution still fails to satisfy practical requirements, mainly
because of the high execution time and memory requirement, theorem proving
and program termination problems.

In this paper new methods are presented which can make symbolic
execution applicable in everyday work, e.g. in programming microprocessor
equipment. The technique developed for symbolic execution is in many ways
similar to abstract program evaluation, but has also new elements. For
application of the methods, the SIMEX - static program analysis system was
developed by the author. Important elements of the system are available and it
appears to be useful in practice.

Basic characteristics of the methods

- The program is decomposed to parts based on the objects of the
abstract data structure. The obtained program parts are executable,
their static analysis can be effected independently.

38 J. SARBO

- Program variables are modelled with abstract values, which can be
represented with finite expressions. The instructions of the program
are actually executed on these values.

- In program branches the information obtained in the determination of
the branch predicate is propagated backward through the actual
program path, by inverse execution of the instructions. This technique
of symbolic execution simultaneously applies forward and backward
execution strategies.

Formal semantics of program errors

The program is a formal description, its meaning is defined mainly by
abstraction. It is known that each level of abstraction defines different
semantics of the program. Abstraction may affect both instructions and data
elements.

In most programming languages instruction abstraction does not
generate new structural properties, elementary and composed objects do not
differ from a structural point of view. E.g. wherever an instruction is accepted, a
subroutine can be also used. On the other hand, attributes generated by data
abstraction are usually different from those of the elementary object.

One part of program errors is related to the attribute 'generation' ability
of data abstraction, and can be considered as 'attribute-violation'. In execution
time the program for efficiency reasons - is mostly stating without
questioning. In principle this is not correct because instruction execution
should always be preceeded by a check on whether its execution is safe or not.

The analysis of program semantics requires some formal definition,
which describes the potential attributes of the program. There are many kinds
of such systems which differ mainly in the subject and/or elaboration of the
applied specification (e.g. algebraic, axiomatic definition etc.). It is however
questionable whether one can specify all significant properties of a data
structure. The specification is called useful redundancy if it is part of the
program to be compiled. If the specification relates only to the programming
language elements a self-consistency check of the program may be obtained.
Our aim is to define a system which is capable for the most detailed semantic
analysis possible, but requires minimal useful redundancy.

The aim of program analysis is to locate program errors. A program error
is considered to be an ordered sequence of events that in run-time can cause
undesired effects (defects). The error model is defined as a set of errors.
Consequently, a program analyser consists of two main parts: one, that follows
the specified events and the other that discriminates the erroneous sequences of
these events.

ABSTRACT EXECUTION OF PROGRAMS 39

Usually, errors can be classed into syntactic or semantic cathegories. It
can be shown that according to our definition all errors of a system, analysable
by some automaton - the semantic ones, too - are detected after all as
syntactic errors.

Symbolic execution

Symbolic execution is a dataflow analysis method, that analyses progam
behaviour by monitoring its actions on the symbolic input data. In this process
the performed manipulations are represented as algebraic expressions over the
input data [3].

Symbolic execution system

Symbolic execution analyses distinct program paths. In general
programs contain an infinite number of paths. From the execution of a path
(PH)' the symbolic value of the program variables (V[PH]) and of the path
condition (PC[PH]) are gained. A path is executable if the corresponding path
condition is consistent. Such a path is called a possible run of the program.

Several symbolic execution systems have been developed [1], [2], [5],
using either: forward expansion or backward substitution implementation
techniques.

In the forward expansion approach symbolic expressions are built as
each statement in the path is encountered.

The backward substitution technique starts at the single exit point of the
program and develops V[PH] by inverse execution of program statements of

PH'

Problems of application

There are three aspects that restrict the applicability of symbolic
execution systems: the bulk of information developed; PC consistency
determination, and termination (loop analysis).

Abstract program models

In this part we shall present a program model appropriate for applying
symbolic execution. Our starting points are the abstract data structure (ADS
- program specification) and the program code. We are not concerned here
with program specification and implementation issues.

40 J. SARBO

Fundamental ideas of program development are: virtual machine and
abstract program. Both models contribute to the better understanding of the
task of the program, but they are inappropriate as operational models of the
program. The program interpretation (e.g. analysis, execution) model must be
operational. Program part is a new concept for representing this model.

The concept of data structure

Program manipulations relate to variables. Accordingly, objects of
input/output operations are also considered to be program variables.
Programming languages usually define elementary and a few 'built-in'
composed data objects. Moreover, construction operations are also provided
to develop composed data elements. In execution time attributes, structures of
composed data are defined exclusively by access algorithms. There is a one-to­
one mapping between composed data objects and their access algorithms.

The representation of a composed object in terms of elementary data (its
allocation) is called static data structure.

Data structure is realized by: static data structure and the access
algorithms interpreted on it.

Relation of ADS and the access algorithms

Abstract data structure (ADS) as a program specification tool describes
the logical structure of the composed data objects. In the program, however,
not all of these objects are realized, because some objects are introduced only
for abstraction reasons.

Ahstract access data structure (AADS)

AADS is a part of the abstract data structure. All objects of AADS have at
least one access algorithm in the program. Consequently AADS can be derived
from ADS by fusing each Oj with its immediate predecessor (Oi) if there is no
occurrence of any access algorithm related to OJ. In the same time the (Oi' 0)
edge is also deleted.

Algorithm of program decomposition

First we examine how the programpart corresponding to 0 1 an
immediate successor of the root of AADS (~) - can be derived (0 1 is selected
from the set of objects nearest to ~. The distance of an object from ~ is measured
by the number of edges of the path connecting them).

ABSTRACT EXECl;TIOS OF PROGRAMS 41

Generation of the programpart of 0,

We take the program code and delete all instructions, except: the
allocation definition of static data structure; the access algorithms correspond­
ing to 0,; all activations (calls) of these routines; program control instructions
(e.g. jump, call etc.).

The resulting programpart may refer to variables (e.g. CPU registers) that
are assigned or used by some other, now omitted part of the program. This kind
of reference is considered to be abstract i/o operation to variables. The result of
an abstract input is always the symbolic 'arbitrary' value, abstract output
operation has no effect.

The resulting program part - under the restrictions mentioned above -
is operational, it can be used in analysing the semantics of the selected object
(od. Because of the partitioning method the analysis reports also potential
errors, besides actual ones.

The concept of path-break

Having developed the program part of 0" we now concentrate on the
derivation of the program part relating to an object which has at least one
predecessor other than ~. We show the steps of the algorithm for O2 , an
immediate successor of 0,.

lt is obvious that the program part of O2 must include the program part of
0, too, since 02 (the corresponding access algorithms) can operate only under
the control of 0,. However, in the analysis of the O2 programpart only those
activities of 0, are of interest, which develop different copies of 02 - according
to some type definition - in the O2 accessing points of the path under analysis,
that still have not been encountered there. In these points of the path all other
runs of the 0, programpart may be eliminated, by breaking off the execution of
the actual program-path.

Hierarchy of programparts

For any object (Oi) of AADS the corresponding programpart can be
derived as follows:

Definition

A selector-path (p) is a finite, ordered sequence of selectors:

P=<S"S2'" .,s"> and p(~)=s~s~_, ... °s~s,(()

42

where Si is a selector (edge) of AADS. The objects passed by pare ° l' 0z, ... , On'
where Sd~)=Ol' s3sl(~)=oz'" .,p(~)=on'

Program part of On is defined by the static data structure, the access
algorithms of ° I' °2, ... , On and all their activations. If the number of possible
different types of 0i (1 ~ i ~ n) is t(oJ, then in the analysis of the On programpart
one has to take into consideration only the program paths producing t(OI)'
t(02)' ... t(on) and different copies of °1 , 0z, ... , On' respectively.

Finite model of program semantics

In this part a model of program semantics is introduced, where the formal
meaning of the program is determined by a finite number offunctions and their
values. This definition is required because we wish to develop a symbolic
execution system of program parts, where the size of information gained is
limited. That is, only a certain part of the information corresponding to the
symbolic expression of program variables. branch predicates is utilized in the
semantic check.

Static analysis is performed on the basis of primitive semantics of the
language. In the following. the language is supposed to be of assembly level,
however, this does not restrict generality. Assembly languages play an
important part in the programming of microprocessor devices chiefly for
efficiency reasons.

In connection with the semantic program check first we analyse what
properties of the program can be deduced from the elementary instructions of
the language (of the processor). Program semantics can be expressed by
attributes of variables that the analyser recognizes in the process of semantic
check.

Formal meaning oJ elementar:v data objects

On instruction level the processor operates as a bit or bit sequence
processor. Sometimes complex instructions are also provided but in general
their function can be decomposed to primitive operations. The instruction, or
elementary data structure has the following parts:

- access algorithm (elementary operation);
- static data structure (allocation of the operand (s));
- control structure (a graph containing a single node).
The program property set is determined by the operational semantics of

instructions (functions over bits or bits sequences) and information of actual
operands' value (again functions over the same domain). E.g.:

bit information: bit value is 0, 1, undefined, or arbitrary;
bit sequence information: the byte is nonzero, is of odd parity.

.~BSTRACT EXECL'TlOA OF PROGRA.IIS 43

Generation of the property set of a program

Based on the semantics of elementary data structure one can deduce the
attributes of a program comprising more than one instruction. Program
semantics is obtained by getting the elementary data structures operated and
by evaluation of functions related to composed objects. E.g.: information of
composed data: type of the object, identification of access etc.

Functions determining the properties of a composed object are connected
to variables. Thus a program variable may possess more than one meaning.

Consequences

According to the definition above, one can derive an actual property set of
the program by the evaluation of functions. This method is applied in the
realization of the analyser. Based on the events describing the elements of the
error model the attributes of the program variables to be followed are
determined. These attributes are coded and attached to the program variables
(extending both their representation and semantics). Furthermore, formal
semantics of the instructions of the program is given regarding the above
described, extended (abstract) program variables.

Backward information propagation

Symbolic execution produces algebraic expressions for both V[PHJ and
peEP H]. In our method these expressions are partly evaluated and finite
information is stored together with the variables.

E.g., if a branch predicate does not have a constant value (True or False)
the abstract program state must be checkpointed. Execution may be continued
with one possible value of the given branch predicate. Information used in the
evaluation of this possible value can be propagated backward on the path by
inverse execution of the instructions. As a result some variables get new
semantics that can be used later.

In general, the information obtained in the evaluation of checkpoint
causing variable(s) can be propagated backward. This method allows the
simultaneous application of forward and backward symbolic execution
strategies.

44 J. SARBO

Example.

Id A, input
Id B, A
and A, 1B0011.1111
jp, eq labell
Z=O.,(\. Z=1

tst B:3
jp, eq label2
Z=O.,(\. Z= 1

;A: = xxxx.xxxx 'arbitrary value'

;A: = OOxx.xxxx
;Z= 1 11 equal to 0

;this part does not modify B

Here the first branch predicate cannot be evaluated, a possible value for Z must
be chosen:

Let us choose Z = 1, in this case, in the previous 'and' operation
operand A must have had 0 value on those bits which are set in the
second operand (j B00111111), and consequently the bit information
of A must have been A=xxOOOOOO. Continuing the execution, when
-:ontrol passes this point again (in the exhausting of graph paths), the
other possible value (Z = 0) has to be chosen. In this case 'nonzero lA)'
can be deduced.

Due to the information propagation the second branch predicate
becomes constant.

Application of symbolic execution

For the efficient application of symbolic execution a two-level program
analysis method was developed which consists of large and small program
analyses (LPA and SPA, respectively).

A program is considered 'large' if the structural relations of data can (or
may) be considered. This distinction is merely a technical one, in certain cases
large program analysis may be omitted.

In the first phase (large program analysis) the program is partitioned to
program parts, which in the second phase (small program analysis) are
individually checked.

Small program analyser

Programs contain the less non constant information in their compiled
and linked, i.e. memory image form. E.g. the veel [nJ access of the source
program can be treated only symbolically, even if the address of veel and the
value of n are constants. Basic purpose of SPA is the analysis of all program

ABSTRACT EXECUT/OS OF PROGRA.lfS 45

paths according to a detailed error model. This can be done also with the
memory image form of the program if input data are regarded to have a
symbolic (abstract) value.

Abstract program execution needs the operational semantics definition of
elementary (e.g. processor) instructions, the function definitions of symbolic
information and the representation of their values. Operational semantics is
most easily given by using a processor simulator program. The simulator is
special in the sense, that each instruction is extended with error analyser
functions.

Large program analyser

Large program analyser - using the formal definition of ADS -
generates program parts, which are then checked by SPA. Technically an access
algorithm and a data object composed of program variables contacts, when in
the access algorithm the absolute (physical) address is evaluated. Accordingly
the information of a composed object is connected to the program variable
which stores this address. That is how a variable can also play the role of the
abstract data of a given programpart.

To simplify the semantic check of a programpart type definition is heavily
used. Path-break in LPA is effected by a return to the last checkpoint, where the
next possible value of the given variable(s) is evaluated.

The applied error model

- Data structure validation
In the static semantic check all possible program runs (paths) are
analysed. Fundamentally, a structure check is performed, i.e. (using
VDL terminology) an access is reported as illegal if it would apply a
selector to the data object, which produces the result of an empty
object (Q).
Variable access check
The well known analysis of live/dead variables can be easily
accomplished, too.

- Compactness validation
If there are several access algorithms (e.g. insert, search etc.) of a

composed object'{e.g. symbol table), then after starting the execution of one of
these algorithms no other operation can use the object to be made access to
until the algorithm ends. The access algorithms corresponding to a given data
element must be primitive operations from the point of view of the object.

46 1. SARBO

Program termination

The question of termination can be put in two ways
a) does the analysis of a non terminating program terminate?
b) do the algorithms of the analysis terminate?

ad a)
The only tool that is used in termination analysis is time limit

specification of the microprocessor equipment programs. Any program run
exceeding this limit is considered erroneous. We note that such an error is only
a potential one, since in general the program termination condition is not
included in each programpart.

ad b)
The problem of termination is raised only in connection with the possible

combinations of checkpoint and backward information propagation al­
gorithms. I t can be proved that these algorithms terminate in every case.

Summing up, the implementation technique proceed~ as follows:
the program is decomposed to parts, which are then executed (in
memory image form) by a simulator;
symbolic information of elementary and composed data is represent­
ed by functions and their values, and is attached to program variables;

- in abstract program evaluation if a condition or operand cannot be
evaluated, the program state is check pointed and execution is
continued with one of its possible values;

- the information used in a checkpoint is propagated backward on the
elements of the path; this method combines forward and backward
execution techniques.

Acknowledgement

The author would like to thank C.H.A. Koster of Nijmegen University for the
encouragement and direction in the course of this work.

References

1. BOYER, R. S., ELsPAs, B.-LEvITT, K. N.: SELECT-A formal system for testing and
debugging programs by symbolic execution, Proc. lnt. Conf. on Reliable Software, 4,
1975.

2. CLARKE. L. A.: A system to generate test data and symbolically execute programs, IEEE TSE,
2, (1976)

ABSTRACT EXECL7/0S OF rt<OGR.HIS 47

3. CLARKE, L.-RICHARDSON, D. J.: Symbolic evaluation methods for program analysis, (in: S.
Miichnick, N. D. Jones: Program Flow Analysis, Prentice-Hall 1981.)

4. COUSOT, P.-COUSOT, R.: Static determination of dynamic properties of programs, IFIP WG.
24. M.O.L. Bulletin 5, 9, (1976)

5. HOWDEN, W. E.: Symbolic testing and the DISSECT symbolic evaluation system, IEEE TSE,
3,4, (1977)

6. KING, J. c.: Symbolic execution and program testing, CACM 19,7 (1976)
7. KOSTER, c. H. A.-FwERHAHN, H.: Static semantic checks in an open-ended language, Rep.

no. 6., Nijmegen Univ., 3, (1977)
8. KOSTER, c. H. A.: Modules and hierarchy, K. U. Nijmegen, Report No. 29, (1982)
9. LEE, J. A. N.: Computer semantics, Van Nostrand Reinhold Co., 1972.

10. OSTERWEIL, L. J.-FoSDlcK, L. D.: DA VE-a validation, error detection and documentation
system for FORTRAN programs, Software-Practice and experience, 6, (1976)

11. WEISER, M.: Programmers use slices when debugging, CACM, 25, 7 (1982)
12. VARGA, L.: A VDL-graf es alkalmazasai, Akademiai Doktori Ertekezes, 1976. (The VDL­

graph and its applications) (Academic doctoral thesis, 1976. In Hungarian)

lanDS SARBO H-1521 Budapest

