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Summary 

The transient behaviour ofthe MOS SC integrators containing a two-stage pole-splitting 
compensated op amp is analyzed. A nonlinear two-pole op amp model is used in the analysis. 
Analytical expressions for the SC integrator response and settling time are deriv~d. A design 
example is given where these results are used to minimize the integrator settling time. 

Introduction 

Active switched-capacitor (SC) circuits process signals by delaying and 
transforming charge sequences. Op amps are used in these circuits to force 
charges from one capacitor into another one. Op amps are operated in impulse 
mode and the accuracy of their output voltages at the end of clock phases is the 
key factor. In MOS monolithic integrated circuits the accuracy of these 
samples is limited by the finite and frequency dependent gain of op amps and by 
their finite slew-rate. 

The effect of the finite op amp gain and band-width in se filters was 
investigated by several authors [lJ, [2J, [3]. In these works a linear op amp 
model having a single dominant-pole transfer function was assumed and the 
effect of the slew rate limitation was not taken into account. 

In audio-range MOS se filters two-stage pole-splitting compensated op 
amps are commonly used (Fig. 1). If we want to know the exact operation of a 
se circuit where such an amplifier is used a more elaborated op amp model 
must be applied. A second-order (two-pole) transfer function has to be 
considered and above a certain signal level the finite slew rate-resulting from 
the limited available current of the input stage to charge the compensation 
capacitor-has to be taken into account, too. 

This paper deals with the transient and settling behaviour of the basic 
integrators used in most se filters. According to the requirements mentioned 
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Fig. I. CMOS two-stage op amp 

above a nonlinear two-pole op amp model is applied. The detailed time­
domain analysis results in analytical expressions for the se integrator response 
and settling time. To illustrate the practical usefulness of the results a design 
example is given where the integrator settling time is minimized by the proper 
choice of the compensation capacitor. 

Qp amp model for transient analysis 

If small signal operation is assumed the linear equivalent circuit of the 
two-stage op amp can be applied as illustrated in Fig. 2 [4]. The transfer 
function is the following 

Ao{l-s/wJ 

where 
AO=gmlgm2Rl 'R 2, W==[C f (1/gm2- R f)] 1 

W1 ;;;::gml/AOCf' W2;;;::gm2/CL if Cf,CL}>C 1 

(1) 

(2) 

(3) 

and the gain-bandwidth product is Wu = gmdC f' If R f is chosen to be equal to 
1/gm2' then the zero in the right half plane is eliminated. The Yo admittance of 
the model is 

v* gm2 R l s/wo 1 *( C*( 
10(s)=R R 1 / +sCf1 / =Gos)+s os) 

1 + f + s Wo + s Wo 
(4) 

where 
(5) 

As it will be shown later, the accuracy of the op amp model is most critical 
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Fig. 3. Yo* admittance versus frequency 

around (1)2/2. In amplifiers compensated for a phase margin of about 60° 
(l)2/2~(J)u' thus (5) yields (J)2/2~gmlRl(1)O' Figure 3 shows G6 and e6 versus 
frequency. Around (1)2/2. 

e6~eL (6) 

therefore the output admittance of the amplifier will be approximated by gm2' 
If a large voltage step is applied to the input of the amplifier, then the 

current of the input stage becomes limited to 10 and the linear model is not 
adequate any more. Therefore, the input stage will be modelled by a piecewise 
linearized approximation of its nonlinear transfer function. 

Transient analysis 

The se integrator model used in transient calculations is shown in Fig. 4. 
The position of the switches in the non inverting configuration are shown in 
brackets. The basic physical operation of the inverting and noninverting 
integrators are the same and it can be described by two phases periodically 
following each other 
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Fig. 4. se integrator model for transient analysis 

1. Charge transfer, when the charge of Cu is transported to Cl 
2. Hold, when Cu is disconnected from the op amp input. 
In the following, only the inverting integrator will be analyzed but the 

result can be applied to the noninverting circuit, too. 
In the interval t < 0 the input signal is zero and all the capacitors in the 

circuit contain zero charge. Let t = 0 be the instant when the switches turn into 
their 1 position and at this moment an input step of magnitude ~ is applied 

tzO (7) 

Charge transfer interval 0 < t ~ T/2 

The elements Vi' Cu, Cl' CL form a loop. It is assumed that after switching, 
the capacitors are charged instantaneously, while V2 cannot change abruptly. 
In reality, the current in the loop is limited by the finite switch resistances (Ron). 
It is easy to show, however, that Vl approaches U~ exponentially with a time 
constant 2Ron Cu ~ 1/(.02. This process requires only a very small fraction of the 
time interval of interest thus the voltages can be assumed to be step functions 

Vl (t= +0)= Cu V= uv 
Cu+CIXCL ' , 

The network can be described by the following equations 

vu(t) = vJt) - Vl (t) 

(8) 

(9) 

(10) 

(11) 

(12) 
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C r[Vr(t) - Vr(t = t i )] + Cu[Vu(t) - Vu(t = t i )] = 0 

Using eq. (7) and (12) eq. (13) can be rewritten 

Cr [vr(t) - vr(t = tJ] = Cu[v 1 (t) - V1 (t = tJ] 

vo(t) = VI (t) + V r(t) 

dvo(t) dVr{t) 
gm2[V2(t)-VO(t)]-CL dt - ~Cr=O 

i1 (t)= - gm1 v2(t)-~ dv2(t) 
Ao Aow1 dt 

97 

(13) 

(14) 

(15) 

(16) 

(17) 

Here and throughout the paper, ti denotes the initial instant of the process. 
The transient must be analyzed in two cases depending upon whether 

v1(t= +O)=U~ is larger or smaller than the threshold I o/gm1 . 

0) U~>Io/gm1 

A) slewing period 

After switching on the current of the input stage jumps to a value Io and 
stays there for a while 

t>O. (18) 

The set of differential equations (14) ... (17) and (18) can be solved for every 
node voltage with the initial conditions at ti = + O. The output voltage will be 
the following 

(19) 

where 
(20) 

Taking into account that wi ~ w 1 we obtain 

(21) 

The first term represents the slew limited rise of the output signal, the second 
fast-decaying one comes from the direct feed-through. The slew limited period 
lasts until the input signal reaches the threshold Io/gm!. The time when this 
occurs will be denoted by T". 

v1(t=T,,)=Io/gm1 . (22) 

2' 
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Substitution of the expression for vdt= T,,) yields an implicit exponential 
equation 

(23) 

where k=Cu!(Cu+C1) 

T" can be computed from this equation. 

B) Linear region 

For t> T" the circuit operates in its linear region, where the current of the 
first stage is proportional to its input voltage 

t> T". (24) 

The set of differential equations (14) ... (17) and (24) must be solved for vo(t), 
vI(t) and l:2(t) with the initial values corresponding to ti= T". The nature of the 
voltage waveforms are determined by the damping factor ~ of the second order 
linear feedback system. 

v W1 +W! 
(1 = 2[(1 +Aok)W1W!J 1/2 · 

(25) 

Assuming that Aok}> 1 and w!}>w 1, after substitution we obtain 

(26) 

It can be readily shown that for practical MOS op amp and se filters ~1 < 1, 
that is, an underdamped transient having overshoot and ringing will occur. The 
output voltage can be written as 

( V Aok { K 01 . [ ~V2 
Vo t}= -ty. i 1 A k 1- ~ SIn Wn1 y 1-(1 . 

+ 0 Y I-d 

. (t-tJ+f301Je --2-(t-t;) 
(:)1+(:)1 } 

(27) 

where 
(28) 

K _1+Aokvo(t=tJ (X 2 y2)1/2 
01 - Aok aV; 01 + 01 

(29) 
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(30) 

(31) 

v _ 11- ~2 w! [1- V2 (t=t;)J 
101-y (,,1 . 

W n1 vo(t=ti) 
(32) 

Now ti = T" has to be substituted in eg. (27). A typical transient of a se 
integrator in the charge transfer period is shown in Fig. 5. Settling time can be 
approximated by the time after which overshoot will be less than the settling 
error Eset . The length of the linear transient TSL can be computed from eg. (27) 

2 {[ 100 
TSL = * In [0 .] w 1 +w2 Eset 10 

. sin ( arctg ~) J + arctg ~} . (33) 

Total settling time will be 

(34) 

(ii) U V; < 10/ gm 1 . 

In this case the whole charge transfer transient takes place in the linear 
network. Eg. (27) describes correctly the whole process with the substitution 
ti= +0. Now the total settling time is given by eg. (33) as 

I 
I 
I 

! j 

Ts TSL 
~,~----------~----------~ 

Slewing Sell! ing in linear region 

Fig. 5. Typical underdamped transient of a se integrator during charge transfer 

(35) 
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Hold interval TI2<t~ T 

It is assumed that at the instant of switching the circuit is operating in its 
linear region. The following equations will describe the operation 

VI(t) = vI(T 12) 

vo(t) = vI(T 12) + VI (t) 

dvo(t) 
gm2[V2(t)-VO(t)]-CL (it =0 

i1(t)= - gml V2(t)-~ dv2(t) 
Ao AOWl dt 

il (t) = gml VI (t). 

(36) 

(37) 

(38) 

(39) 

(40) 

This set of differential equations has to be solved for vo(t). The node voltages at 
the end of the charge transfer period t = TI2 give the required initial conditions. 
Damping factor in this period will be the following 

(2= W1+W2 ~~[gm2 Cf ]1/2 
. 2J(1+Ao)w lw 2 2 gml CL 

(41) 

if Ao~ 1, W2~Wl. 
For practical MOS op amps ~2 < 1. The output voltage can be written 

where 

t> T12; (43) 

_ 1 + Ao vo(T 12) 2 U2 1/2 
K02 -~ v

I
(TI2) (X02 + 1(2) . (44) 

Y02 .jl=-H 
/302 =arctg-x +arctg j; (45) 

02 ':.2 
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As could be expected, the output voltage will approach that of Cl in an 
underdamped fashion. The settling accuracy ofthe output voltage will improve 
but it cannot be better than that of vl(T /2). 

Application example 

The settling time of the se integrator is a nonlinear function of the 
compensation capacitor Cf' It means that there must be an optimum value of 
C f where the settling time is minimum. This will be illustrated in the following 
example. 

The parameters of the circuit are 

10 911A, gml =20 llS, gm2 =60 llS, Ao 104
, 

CL =5pF, Cu=1pF, Cl 5pF, Io/gml U=1,575V. 

The transient response of the se integrator was computed with four different 
values of the input step V:, while C f is varied from 1 to 5 pF. The slewing period 
and the 0,1% settling time are given in Table I. 

Table I 

V, [v] C f [pFJ 7; [flsecJ 7;" [J.Isec] 

0.1 1.598 
2 0.136 1.633 

3.5 0.163 1.666 
4 0.187 1.533 
5 0.207 2.034 

0.063 1.558 
2 0.081 1.583 

2.5 3 0.092 1.596 
4 0.101 1.454 
5 0.108 1.934 

0.037 1.528 
2 0.045 1.611 

2 3 0.049 1.629 
4 0.052 1.403 
5 0.055 1.991 

1 1.535 
2 1.560 
3 1.579 
4 1.344 
5 1.931 

An optimum value of er = 4 pF can be found in every cases. 
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Conclusion 

The transient analysis of the se integrators applying nonlinear two-pole 
op amp model has been presented. It has been shown that slew-rate limitation 
occurs if the integrator input voltage is larger than Io/gm! U. In the linear region 
the integrator output approaches its final value in an underdamped fashion 
that is with overshoot and ringing. The exact time functions for the slew-limited 
and the linear-period during charge transfer are given by Eq. (19) and (27). Hold 
mode transient given by Eq. (42) shows that the settling accuracy of the 
integrator is formed in the charge transfer interval. Analytic expressions for the 
se integrator settling time are presented. These results can be used in circuit 
design, e.g. for choosing the proper value of the compensation capacitors to 
minimize the settling time (error) of every integrator in the se filter. 

If the whole transient takes place in the linear region, theoretically it does 
not meet any difficulties to extend the time domain analysis for periodic 
operation. From the sequence of the output voltage the z- and frequency­
domain transfer functions of the se integrator can be derived. These 
calculations are straightforward but are expected to be extremely lengthy. 
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