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Summary 

In the paper simply derived formulas are presented for switched capacitor network 
sensitivities, and their useful interpretation as summed transfer function path-products is given. 
The extension of the nodal analysis is discussed for calculating all transfer functions necessary to 
evaluate the first and higher order sensitivities. At last the computer implementation of the 
presented technique in the program SCANSY is briefly mentioned. 

Introduction 

Recently a lot of attention has been devoted to switched capacitor (SC) 
networks because they allow filter implementation with low sensitivity in an 
integrated circuit. Since these circuits are often quite large, pen and paper 
analysis techniques are oflimited use. The widely used nodal analysis (NA) and 
modified nodal analysis (MNA) allow simple implementation on computer 
[1,3-5]. However, the sensitivity analysis requires many computations even in 
the first order case [4, 5J, using the sensitivities many informations about the 
network behaviour are available and even network optimization or approx
imate yield estimation can be performed. 

In this paper a technique for general interpretation and simple 
determination of se network sensitivities is presented. In Section 2 the 
definitions of the different frequency and z-domain transfer functions are 
detailed, then in Section 3 we derive the sensitivity formulae and give their 
interpretation. An extension of the NA is presented in Section 4 which allows 
an easy determination of all transfer functions for the sensitivity analysis. 

The results stated in this paper are very general in the sense that they can' 
be applied to se networks with many phases, arbitrary duty cycles, with or 
without continuous coupling between input and output, in frequency or z
domain, for first or higher order sensitivities. The only restrictions are the 
linearity and ideality of the network elements. 
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Definitions 

In the paper we consider se networks contammg ideal switches, 
capacitors and operational amplifiers. The switches are controlled by Boolean 
clock variables qJi(t) = 0 or 1. All switches driven by qJi(t) are open or closed at 
time t corresponding to qJi(t)=O or 1, respectively. The time is partitioned into 
time slots Llk=(tk- 1 , tk) such that the clock signals do not vary in Ll k • We 
assume that the clock signals are periodic with N time slots in one period of 
duration T. The ensemble of the kth time slots in all periods is called the kth 
phase. 

If any se network defined above is excited by a piecewise-constant 
voltage source ui(t) = uL t E Ll k , then all node voltages in the network are also 
piecewise-constant signals (J(t) = ut, t E Ll k). The constant values can be 
considered as samples in Llb so we can define for any piecewise-constant signal 

J _,' J J' . ) 
1: (t)-\ v{, v2 , ... , VN, v},.,+ l' ... vk+rN' ... f 

Nz-transforms (one for each phase) as 
x 

Vj(-)-Z{vJ ) - '" .. i _-r k L. - k+rNf - 1... Vk+rNL. , k=l,. ",N (1) 
r=O 

and analogous definitions Qi, vi, Jl for charge responces qj(t), voltage sources 
uj(t) and charge sources At), respectively. The Nz-transforms V l of a signal can 
be collected in a vector V j: 

Vj - [vj vj vj JT 
- 1 2'" N (2) 

where T denotes transpose and the upper indexj (resp., lower index k) refers to 
the place (resp., the phase) of the signal. 

With the above definitions the z-domain input-output relation can be 
expressed in the form of 

(3) 

where Toi(Z) is the z-domain voltage transfer function (VTF). In other words if 
non-zero voltage excitation is only applied in phase l and the output voltage is 
only observed in phase k, then the entry TkKz) of Toi(Z) relates the z-transforms 
of the input sequence V;(z) to the output sequence VHz). Different methods are 
available (see f.i. References [1-5J) to construct the z-domain equations of a se 
network and to solve them for getting T oi in (3). 

The frequency domain transfer function H(w) can be expressed by the z
domain Toi(Z), but it depends on the applied source signal and the output 
observation. In all cases we assume bandlimited input signals, hence we only 
consider the base band transmission without aliasing effect. Although the 
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results can easily be extended for the aliasing case, for the sake of brevity, it is 
omitted here. 

(i) Input sampled in phase 1 and held over a full period T, output sampled 
in phase k. If the input samples are taken from a sinusoidal excitation with 
pulsation w then the samples of the output voltage in phase k fit also a sine wave 
with the same pulsation w. The transfer function 

IV 

HLS)(w)=e- jWlk - 1 L TZi(~wT) (4) 
1= 1 

relates the complex phasors of these sine waves. The first term takes into 
account the time difference between the phases 1 and k, i.e. the sampling time 
instants. 

(ii) Input and output as in (i) but output held over a time r and passed 
through a smoothing filter. The transfer function 

HLSh
) (w) = v( w )H~) (w) (5) 

with 

() 
r sin wr/2 -JOw I" vw=- e!-
T wr/2 

(6) 

relates the Fourier transforms of the input and output signals of the whole 
system or in case of sinusoidal excitation it relates the complex input and 
output phasors at pulsation w. v(w) expresses the sample-and-hold effect. 

(iii) Input as before, output directly passed through a smoothing filter. In 
this case the output can be considered as sampled in each phase k, k = 1 ... N 
and held over rk = tk - tk _ l' The transfer function, having the same meaning as 
in (ii), has the form of 

IV IV 
H(sh)(W)= L vdw)e-jwlk-l L Tkl(~wT) 

k = 1 1= 1 
(7) 

with vk(w) as in Equ. (6) but r substituted by rk . 

(iv) Input and output piecewise-constant. The transfer function for phase 
k (output only observed in phase k) is given by 

IV 
mr(w) = vk(w) L e - jW(lk - 1 - 1/-l)TZl(ejwT) 

1= 1 

and for the overall transfer function (output as in (iii)) we have 
IV 

H(p)(w)= L Hjf)(w). 
k=1 

(8) 

(9) 

(v) Continuous input and output. In this case every signal can be 
partitioned [4J into a piecewise-constant component by sampling the signal at 
the end t i- of time slot i and holding backward in L1 i , i= 1 .. . N, and a 
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remainder waveform having zero value at all t i- • Following this decomposition 
the transfer function for phase k is given by 

N 
Hkc)(W) = VkC)(W) L e- jW(tk-tllTZl(ejwT) + 

/; 1 

+ [~ - VkC
) (W)] T%U%) (10) 

and for the overall transfer function we have 
N 

H(C)(w) = L HkC)(W) (11 ) 
k;l 

with 
. /7 C:k SIll WC:k - . ,~ _ e)W!kf-

T wc:d2 
(12) 

expressing the backward-sample-and-hold effect. 

Sensitivity formulas 

In the SC network analysis every capacitor C can be characterized by its 
charge-voltage relation 

QC=CMVC (13) 

where VC and QC are the capacitor voltage and incremental charge vectors, 
respectively, having values from the different phases, and the matrix M given by 

[ 

1 -Il M~ -\;-: (14) 

implies that the charge Qk in phase k depends upon the voltage difference 
between two consecutive phases, i.e. VJ; - VJ; _ l' The upper right term z - 1 

shows that for k = 1 

VC __ -Ivc 
k-I-':; N (15) 

i.e. the previous phase N belongs to the preceding period (z - 1 corresponds to a 
one-period delay). 

Concerning the input-output relation with respect to the capacitor C the 
signal flow graph [8J of Fig. la can be drawn. From the graph the z-domain 
VTF TOi of (3) can be written as 
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F 
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P' 
IQ) I b) I cl 

Fig. 1.(a) Signal flow graph of an se network with respect to the capacitor C. (b) Transfer 
function Tci. (c) Transfer function roe 

or as 
yoi=D+CB(1-CMF)-lMA=D+CBP- 1MA 

TOi = D + CBM(1- CF M) - 1 A = D + CBM R - 1 A 

where the equivalence 

can be verified by the identity 

M(FM)-l =(MF)-l M. 

Differentiating (16), applying the formula 

ap-l = _p-l ap p-l 
ac ac 

(16) 

(17) 

( 18) 

(19) 

(20) 

for the derivative of an inverse matrix and using (18) we get the first order z
domain sensitivity as 

Se(z)= a~?z) =BP-lpp-1MA-CBP-l(-MF)P-1MA= 

(21) 

In the last expression two VTF's, shown in Figs Ib and le, can be 
recognized, i.e. 

Toe=CBP-1M (22) 

They are the VTF's from the selected capacitor C to the output 0 and from 
the input i to the capacitor C, respectively. Substituting (22) into (21) we obtain 

Se(z) = ~ yoeTci. (23) 
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The Equ. (23) has the following interpretation. The two VTF's of (22) 
define a path between the input and output through the selected capacitor. 
Going backward on this path the product in (23) can be termed as a transfer
function-path-product (TFPP). Thus, the first order sensitivity is proportional 
to this TFPP. 

The second order sensitivity can be obtained by differentiating (23): 

Here again we can recognize two TFPP's corresponding to the two 
possible paths between the input and output through the selected capacitors, 
i.e. i-s-r-o and i-r-s-o. The second order sensitivity is proportional to the sum 
of these TFPP's corresponding to the possible paths defined above. The 
proportionality factor is lover CrCs, the product of the selected capacitor 
values. 

Consecutive differentiations yield the following theorem: 
The kth order sensitivity of the VTF yoi(Z) with respect to the capacitors 

Cl' C 2 ••• Ck is the sum of TFPP's of all possible paths between the input and 
output through the selected capacitors divided by the product of the capacitor 
values. In a symbolic notation 

S\k} .. k =(C 1 C 2' .. Ck)-l I TFPP. 
all 

possible 
paths 

(25) 

The theorem can be considered as an extension of the result in Reference 
[6J to the discrete time case for SC networks. A preliminary form of this 
theorem can be found in Reference [7]. 

The number of summed terms in (25) is k! corresponding to the 
permutation of the k capacitors. Each term needs k matrix multiplications with 
N 3 multiplications of complex numbers. To determine all kth order sensitivities 

we need (~) calculations detailed above, when n is the number of capacitors in 

the SC network. Therefore, a total sensitivity analysis in case oflarge N, nand k 
is a rather time consuming task. Nevertheless, in case of a 2-phase SC network 
and concerning only first order sensitivities we only need 8n complex 
multiplications. 

The frequency domain sensitivities of the different VTF's defined in Equs. 
(4H12) can be expressed by the entries of the corresponding z-domain 
sensitivity. For example the sensitivity of HkPl(w) in (8) is given by 

oHkPl(w) () f. -jW(tk-l-tl tl°Tkl(Z) I 
~ =~\w L. e -~--
cC 1= 1 cC z=ejwT 

(26) 
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and it needs the kth row of Sc(z) in (23). All other calculations are 
straightforward and omitted here. The sensitivities of T1:U co) in (to) can be 
obtained by well-known methods (f.i. by Ref. [6J) because T1:i( co) is the transfer 
function of the active C network of phase k. 

Extension of nodal analysis 

One ofthe most convenient methods for analyzing se networks is the NA 
[1]. Following a similar way as in [lJ, on the base of Equ. (13) an N-phase 
nodal capacitance matrix can easily be built up and it is reduced according to 
the voltage force caused by the closed switches and the opamp inputs. Thus the 
z-domain equations are set up in the form of 

J(z) = C(z) V(z) (27) 
or in detail 

J I CII -Z-IC
1N VI 

J 2 -C21 C n V2 
= (28) 

I N -CN• N - I CNN VN 

where Vk and J k are the node voltage and charge excitation vectors in phase k, 
respectively, the matrices Ck1'S are the reduced nodal capacitance matrices and 
the missing blocks are zero matrices. C(z) in (28) has the same structure as the 
corresponding matrix in [3,4J using.MNA formulation but in (28) there are 
much less rows and columns. 

Using the NA there arise two problems. First it can not handle voltage 
excitation. If we try to overcome this problem by some additional operations 
on the inverted matrix D(z)= C-1(z) there remains the second problem: for 
computing the inner VTF's for the sensitivity formulas of Equs. (23H25) we 
need to short-circuit the input port and this results in different network 
equations to be set up and to be solved. Although the MNA solves these 
problems, it needs putting additional voltage sources in series with all 
capacitors doubling consequently the number of the capacitive branch 
equations even in the second order sensitivity analysis. The advantages of the 
adjoint network concept in the MNA can be utilized only in the case of first 
order sensitivities. 

We propose the following extension of the NA to avcid the above 
problems, by which we can convert any necessary voltage excitation into a 
charge excitation. First, we introduce the network of Fig. 2a as an input unit 
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preceeding the SC network to be analyzed as shown in Fig. 2b. By inspection 
one can see that, connecting an uncharged unit capacitor in between the input 
and output in each phase, this network maps the charge excitation/(t) into the 
output voltage vi(t) = - /(t) with the same value independently of the output 
load. Hence, any VTF in the original network excited by a voltage source ui(t) is 
equal to the corresponding charge-to-voltage transfer function (QVTF) in the 
extended network of Fig. 2b excited by a charge source /(t) = - ui(t). The 
presence of the input network can be taken into account in the NA circuit 
description (28) by writing C~k = - 1 and zero anywhere else into the ith row of 
each block row of C(z). This extension of the NA is referred to as extended 
nodal analysis (EN A). 

Our input network solves the short-circuiting problem as well. Because 
/ 0 implies ui = 0 the extended network without the input charge source is 
equivalent to the original network with short-circuited input port. 

We have to solve yet the problem how to determine inner VTF's from a 
capacitor C using ENA. To do this we can partition the result in Equ. (21) as 

(29) 

where from the graph of Fig. la WOC is the QVTF from capacitor C to the 
output port. Comparing (23) and (29) we have for calculating the first term in 
(23) 

~ yoc= wocM. (30) 

Resulting from the form of M in (14) the product wocM can be calculated entry 
by entry as 

91 C1~j Q1 i 

~~: CD i ..... q>1 4>1J.. i 

~
' - IQ 

I i 

J' cD ! +:V' 
.l...L v 

101 

Input 

network 

Ibl 

Original 

se netw. 

..L 

Fig.::. (a) Input network. The composite switch pairs !PI .. . !PN connect uncharged unit capacitor 
in between the input and output in phases 1 ... N, respectively. (b) The use of the input network 
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Fig. 3. Thevenin-Norton equivalence of voltage and charge sources in se networks 

{
woe woe 

(woe M). = kl - k.l + 1 
kl woe _ - 1 woe 

kN-';' kl 

avoiding any matrix multiplication. 

1=1. .. N-l 

I=N 

III 

(31) 

We note here that Equ. (30) can be considered as the Thevenin-Norton 
equivalence in SC networks (see Fig. 3). Again from the form of M it states that 
a constant Thevenin voltage source U~ in phase k is equivalent with a constant 
Norton charge source J~ = CUL J~ + 1 = - J~ in phases k and k + 1. 

Using the above detailed ENA and solving (27) we get 

V(z) = D(z)J(z), D(z) = C - I(Z). (32) 

Any z-domain transfer function necessary for a simple network analysis and for 
a total sensitivity analysis can easily be read from the matrix D(z). In detail: 

'l"i_ woi DO; 
lkl- - kl= - kl 

Tci Wci (Dmi Dni) kl = - kl = - kl - kl 

W oe - (Dam Don) 
kl- - kl - kl 

WC? = - (D;:('mq - DZ'l'nq) + (D~fmq - D~fnq) 

(33) 

where the T's and W's are VTF's and QVTF's, respectively, and the capacitors 
C, Cp and Cq are connected between nodes m and n, mp, and np, mq and nq, 
respectively. 

Conclusion 

In the paper simply derived formulas for the sensitivities of SC networks 
were presented and an interpretation easy to evaluate them was given. An 
extension ofthe NA was introduced by which each z-domain transfer function 
necessary for calculating any first or higher order sensitivity can directly be 
read from the inverted network matrix D(z). 

The presented technique has been implemented in the computer program 
SCANSY (SC network analysis, sensitivity and yield calculation) in the case of 
2-phase SC networks with 50% duty cycle and for first order sensitivities [9]. 
Among several examples the design ofa PCM channel filter was checked by the 

3 Periodica Polytechnica Electrical Eng. 30/2-3 
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program. Efficient improvement of the initial design could be arised only by 
investigating the sensitivity functions of the transmitter and receiver parts of 
the filter, such as correcting the inaccuracies of the LDI transformation in the 
design, decreasing the passband ripple and increasing the cutoff slope. 
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