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I have learned 
To look on nature, not as in the hour 
Of thoughtless youth; but hearing often-times 
The still, sad music of humanity, 
Nor harsh nor grating, though of ample power 
To chasten and subdue. And I have felt 
A presence that disturbs me with the joy 
Of elevated thoughts; a sense sublime 
Of something far more deeply interfused 
Whose dwelling is the light of setting suns, 
And the round ocean and the living air, 
And the blue sky, and in the mind of man. 
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Summary 

Even though engineering and physics start out with fundamentally different approaches 
to nature--one wants to synthetize, the other to analyze-the closer they get to a concrete 
problem-as every practicing scientist knows-the less this difference becomes discernible. In 
their methods, engineering and physics are closely related: so closely, indeed, that methods, 
schemas, theorems are shared to the extent that their origins are obscured by the routine usage. 

The origin of a set of relationships commonly known as Fluctuation-Dissipation 
Theorems, and widely used in many-body and plasma physics date back to a paper by Nyquist 
[lJ, in which he studied the noise generated in electric circuits. Few of the authors of the papers 
on the application of fluctuation-dissipation theorem, however, would be acquainted with the 
Nyquist Theorem. Since Nyquist's early paper, the FDT-s have been derived, re-derived and 
extended innumerable times, and have acquired a central role in many areas of physics. Thus no 
historical justification is needed in discussing and reviewing them. Nevertheless, such a 
discussion also provides, for the interested, a glance at one of the manifestations of the confluence 
of engineering and physical sciences. 

* Dedicated to Professor Karoly Simonyi on the occasion of his Seventieth Birthday 
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Introduction 

The basic idea of the Fluctuation-Dissipation Theorems is that the 
equilibrium properties of a physical system can be probed by testing its 
response to an external perturbation. This is a remarkable fact. A more 
technical but equally noteworthy feature is that the "testing" of the system can 
be done to lower degree of accuracy (lower "order" in a perturbation 
expansion), than the accuracy of the equilibrium information provided. 

Amongst the many papers on FDT -s for physical systems Kubo's [2J 
seminar paper, the early paper by Callen and Welton [3J, and Martin's paper 
[4J written in the more contemporary language of modern many-body physics 
may be mentioned in particular. In this paper our emphasis is on plasmas, or 
more generally, on Coulomb systems. The linear FDT-s for classical plasmas 
were reviewed by Golden and Kalman [5]. The derivation of the nonlinear 
FDT is relatively new and is due to Golden, Kalman and Silevitch [6J and 
Sitenko [7]. Applications of the FDT -s-both linear and nonlinear-to 
plasmas, in particular to strongly coupled dense plasmas, are reviewed by 
Kalman [8, 9J and by Golden and Kalman [10]. 

Extensions to mUlticomponent systems [11, 12J and to surface plasmas 
[13J are quite recent and due to Kalman and Golden [llJ and to Golden and 
Lu [12, B]. Finally the important problem of the nonlinear FDT for quantum 
systems is presently investigated by Gu and Kalman [14]: the results presented 
in this paper are new. 

Fluctuation-Dissipation Theorems establish relationships between two 
sets of quantities. The first set is the hierarchy of response functions 
characterizing the system response to an external perturbation. There is a great 
deal offreedom in choosing suitable "perturbing" and "responding" quantities. 
We will adopt q;, the potential (energy) and n, the density, as the fundamental 
pair, although we will also need the longitudinal electric current density j and 
the longitudinal electric field E. The potential can be either "external", (cP) i.e. 
induced by external sources only, or "total" (CP), i.e. including also the induced 
plasma potential. Then, rather symbolically, the two sets of response functions, 
X (external) and X (total), can be defined through the relations 

n= X cP+ X cPcP (la) 
1 2 

or 

n = x. cP + x. CPcP . (lb) 
1 2 

Alternatively, 

J= 8 E+ 8 EE (2) 
1 2 

etc. 



E.g., 

with 
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The notation can be made more explicit by using Fourier representation. 

n(kw)= X (kw) <I> (kw) + LX(P,u,qv)<I>(p,u)<I>(qv)+... (3) 
1 pq 2 

p.v 

p+q=k 

,u+v=w 

L = 2
1
VfdW L 

kw n k 
(V=volume) . 

The longitudinal dielectric function 8 is related to X by 

8(kw) = 1- 41kX(kw) 

4ne2 

41k= k2 

(4) 

(5) 

being the Fourier transforms of the Coulomb-potential. 
The relationships between the "external" and "total" response functions X 

and X are 

X (kw) 

i (kw) = ~(kw) 

X(p,u, qv) 

X(p,u,qv)= ( \ ( ) (k ). z 8 p,u 8 qv 8 w 
(6) 

The second set of quantities are two-point, three-point, etc. functions (i.e. 
equilibrium averages of fluctuating quantities taken a two, three, etc. space­
time points) and their Fourier transforms, linear, quadratic, etc., (dynamical) 
structure factors: 

1 
S(k, .)= N <nk(O)lLk( -r) 

1 
Q(k, r)= N vdO)j -d -r) 

1 
S(kl Tt; kz, r2)= N <nk1 +K2(0)n- k1 ( -r1)n- k2 ( -r2) 

=:S(012) 

S(kw) = S dreiwtS(k, r) (7) 
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etc. The precise definition of the fluctuating quantities are 
N 

n
k 

= 2:: e - ik· Xi - N (\ 
I 

(8) 

Equally important are the static (equilibrium) structure factors, which are 
linked to the Fourier transforms of the pair and three-body correlation 
functions gk and hklk2 : 

1 
Sk = N <nk(O)n-dO) 

= 1 +ngk 

1 
Sklk2= N <nk1 (0)nk2 (0)n-dO) 

Linear fluctuation-tiissipation theorem 

(9) 

We consider [5J a one-component plasma under the influence of a 
perturbing potential ~k (t). The equilibrium system is described by the 
Hamiltonian 

The perturbation adds to it a term 

H(l) ~vL L ~dt)eik 'Xi 

k i 

The total Hamiltonian 

H = H(O) + H(l) 

generates the Liouville-operator 

L=JjO)+Jjl) 

JjO)= -i[H(O), ... J 
Jjl)= -i[H(l), ... ]. 

(10) 

(11) 

(12) 
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The equilibrium Liouville operator can be used to .construct the time 
evolution operator for the equilibrium system 

U(t, t') = eiVO)(t,t') = U(t - t') . (13) 

The state of the system is described through the phase space distribution 
function Q({pJ {xJ, t) in the 6N-dimensional phase space; it satisfies the 
Liouville equation 

8Q 
-",- = -iLQ. 
ot 

(14) 

A formally similar, but not identical, equation IS obeyed by any 
dynamical variable, say A: 

and 

dA 'LA Tt=+z . 

Thus the time evolution operator plays a dual role. In equilibrium 

Q(t) = U (t' , t)Q(t' ) 

A(t)= U(t' , t)A(t). 

The equilibrium Q = Q(O) exhibits the canonical form 

Q(O) =Z-le-PH(O) 

(15) 

(16) 

(17) 

(18) 

while its general form under the effect of the perturbation can be expressed as 
an expansion in 1>k : 

(19) 

We concentrate now on Q(l). It can be written down as the formal 
solution of the Liouville equation (14): 

t 

Q(1)(t) = -i J dt'U(t, t')L(t')Q(O). (20) 
-co 

A series of simple steps leads to 

00 

Q(1)(t)= -:f Q(O) f f d-r k· j_dt--r)1>k(t--r). (21) 

o 

We now can use (21) to evaluate averages of dynamical quantities. 
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Consider the longitudinal particle current density jk : 

(jk(t»(l)= J d{Pi}d{Xi}Q(1)(t)jk 

00 

= J3: f dr(jk(t)j _k(t-r»(O)<:Pk(t-r). (22) 

o 

For future reference, we note that (22) is equivalent to 

8(k, r) =,Be (r) Q(k, r) 

with e(r) being the step function. 

(23) 

Shifting to Fourier transform language and trading jdw) for ndw), one 
finds 

+00 +00 

(nk (w»(l) = - i ,B; f dw' f d-reiw
". (24) 

-00 -co 

Taking now the real part of Eq. (24) and using the definitions of Eq. (1) 
and (7), one obtains 

S(kw) = - _,B2 ImX(kw). 
nw 

(25) 

This is the linear dynamical FDT. The static FDT is obtained through 
integration over w, which yields 

1 
,Bn X(kO)=Sk = 1 +ngk • (26) 

The fact that gk is expressible in term of X(kw) at w = 0 (a result of the 
application of the Kramers-Kronig relations) is a remarkable feature of 
classical systems and does not survive once quantum effects are taken into 
account. 

Nonlinear fluctuation-dissipation theorem 

While the linear FDT has been known for some time [2, 5J, its extension 
into the nonlinear domain is relatively new, and is due to Golden, Kalman and 
Silevitch (GKS) [6J and to Sitenko [7]. These authors have established a 
quadratic FDT, relating quadratic response functions to three-point 
correlations. 

Although the derivation (we follow the more general approach ofGKS) is 
similar to the derivation of the linear FDT, it is much more involved and 
presents some special problems. 
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Second order perturbation calculation leads to 

-cc -cc 

the application of which yields the equivalent of (23): 

with 

8(k1' L1; k2' L2)= - i 6(L1)6(L2)' {.BQ(120) + 6(L2 -L1)Z(120) 

+6(L1- L2)Z(210)} 

The rest of notation has been explained in (2) and (7). 
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(28) 

The problem with Eq. (28) lies in the presence of the unwieldy Poisson­
bracket terms. Further progress can be made only after their elimination. This 
can be accomplished through the following steps. First, observe that Z and Q 
are related to each other by 

Z(120)+Z(102)= -.BQ(120) 

Z(21O)+Z(201)= -.BQ(210) 

= - .BQ(120) . 

Substituting Eq. (31) into Eq. (28), one finds 

8(k1 ,L1 ; k2' L2)= i 6(L1)6(L2)' {6(L2 -L1)Z(102) 

+ 6(L1 -L2)Z(201)} . 

(30) 

(31) 

Re-labelling the argument of 8 in Eq. (31) in two different ways and 
exploiting the time translation invariance property of Z, one can construct 

8(k1' L2 L1; -k, L2)+8( k, L1; k2' L1 -L2) 

= - i{6(Ld6 (L2)[6(L2- L1)Z(120) 

+6(L1- L2)Z(210)J 

+ 6( -L1)6(L2)6(L2 -L1)Z(021) 

+6(L1)6( -L2)6(L1 -L2)Z(012)}. (32) 
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which when combined with Eq. (28) cancels all the Z-terms except the ones 
multiplied by e( -.1) and e( -.2)' respectively. These latter can, however, be 
eliminated by projecting out the .1 > 0, .2> 0 causal part of the combined 
response functions. This leads to the desired result, which can conveniently be 
formulated in Fourier transform language. The central object is the causal 
symmetrized combination of quadratic response functions, 

S(k1w1; k2w2)=wX(k1w1; k 2W2) 

-wd d.ub+(W1-.u)X(-k1-.u;kw2+.u) 

-wd d.ub+(w2-.u)X(kw1 +.u; -k2 .u) (33) 

which then appears to be related to the quadratic dynamical structure function 
through 

~ P2f f ..:l(k1Wl ;k2w 2)= - 2" d.u dvb+(w1-.u)b+(w2-v) 

.uVWS(k1.u; k2v) (34) 

Eq. (34) can be inverted, so that an explicit relationship for S results: 

S(k1w1; k2w2)= 

= _ -.; Re {X(k 1W1; k 2w2) _ X(kw; -k1w 1) _ X(kw; -k2 W 2)}. (35) 
p- W1W 1 w1w W2 W 

The above relationship constitutes the quadratic dynamical FDT and it is 
analogue of the linear Eq. (25). The equivalent of the static Eq. (26) is 

(36) 

Quantum fluctuation-dissipation theorems 

The quantum version of the linear FDT is well known and is widely used 
in many body theory [2,4]. A quantum equivalent of the quadratic theorem 
has, however, been established only quite recently [14J, whether it is the most 
convenient generalization, is still an open question. 

The formal difference between classical and quantum FDT formalisms 
stems from the non-commutability of the microscopic density (or current) 
operator taken at two different times: 

(n(.)n(O) =/; (n(O)n(.) (37) 

and from the more complex way the quantum Liouville operator operates. 
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The density matrix Q obeys the formally identical Liouville Equation Eq. 
(14) as its classical counter-part. Also, the solution of the Liouville- equation, is 
formally unchanged in terms of the' evolution operator U = e - iVO)t. What 
becomes different is the quantity Jjl)Q(Ol. Evaluating the latter, one encounters 
the commutator [nk' e-PH(O)J, which becomes (We use units with li = 1) 

with 

[ - PU<°)J '13 f3H(Ol '1'( '13 d) dnk n e = -1 e- -1 - -
k, dt dt 

~-1 
'1'(x) = --. 

x 

Note that for x-+O, '1'(x)-+ 1 and the classical limit is recovered. 
We define S(k, 1') now as 

1 
S(k, 1')= N <n d -1')ndO) 

(38) 

(39) 

1 
=1= N <nk(O)n-d -1') :=S(k, -1'). (40) 

However, one can easily relate the latter to the former by exploiting the 
invariance of the trace under cyclic permutation 

S(k, -1')=S(k, 1'-if3) 
or 

S(k-w)=e- Pw S(kw) 

and the dynamical FDT takes the form 

(1-e- PW)S(kw)= - _1 lm Hkw) 
mr 

while the static FDT becomes (cf. Eq. (26)) 

- _1_ cth f3
2

w 
lm Hkw)=Sk = 1 +ngk . 

2nn 

(41) 

(42) 

(43) 

Establishing the quadratic quantum FDT is a much more difficult matter 
than any of the preceding cases. Again, the formal solution for Q [2J is still 
given by Eq. (27). The expression replacing Eq. (28), however, becomes 

{[B(1'2 - 1'1) '1'(w2)Z(120) + B(1' 1 - l' 2) '1'(w1)Z(21O) 

+f3'1'(W1)'1'(W2) [B(1'2-1'1)Q(120)+B(1'1-1'2)Q(120)]} (44) 
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with the understanding that Z and Q are now given in w-representation. With 
considerable algebra the symmetrization procedure and the solution of the 
integral equation outlined in the classical case can be carried through, at the 
expense, however, of generating all the possible permutations of the three 
density fluctuation correlations appearing in S. Thus one finds, 

T(k1W1 ; k2( 2)= 

= -2 Re {X(k1W1; k 2 ( 2) _ X(kw 1; -k1 -(1) _ X(kw; -k2 -(2 )} (45) 
W1W2 wW1 ww2 

where Tis the totally symmetrized quantity 

T= _ S(102)+S(201) + S(021)+S(120) + S(012)+S(21O). (46) 
W1W2 w1w W2W 

It is instructive to see how the classical limit ofEq. (46) is recovered. In the 
classical limit all the S - s are identical and the r.h.s. of Eq. (46) is zero; it is 
however also divided by an (unexhibited) /i 2

. Thus an expansion of the r.h.s. is 
required. Using the relations between the two cycles of the permutations 

S(21O; w1(2)=S(012; -w1, -(2 ) 

etc., and also the relations within a cycle 

S(201) = e-/lw2 S(012) 

S(120) = e-/lw1 S(201) 

and expanding to order f32 (i.e. /i 2), Eq. (46) reduces to 

T= f3 2S(012) 

which, then, when combined with the r.h.s. of Eq. (45) yields Eq. (35). 

(47) 

(48) 

(49) 

A final note on the usefulness of Eq. (45). While in all the previously 
discussed cases the FDT relation can be used either to determine S in terms of X 
or vice versa, here only the even projection of S(w)(S(w) + S( -w)) can be 
determined from Eq. (45). Whether an independent relation for the odd 
projection, that would help one to find the full S(w), can be found, is still an 
open question. 
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