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Summary 

The viewpoints of semiconductor-physics are overemphasized, the electrodynamic 
concepts are practically neglected in the education of microelectronics. The education of 
electromagnetic concepts may be fertilized by the microelectronic problems either introducing 
the electromagnetic background or applying the real structures as examples for electrodynamic 
concepts. 

Introduction 

The fundamental phenomena taking place in microelectronic structures, 
semiconductor devices, monolitic and hybrid IC-s are basically electromagne
tic ones. In spite of this fact the viewpoint of semiconductor physics are 
overemphasized, the electrodynamic concepts are practically neglected in the 
education of these fields. 

In the authors opinion the education of the electromagnetic concepts may 
be fertilized by the microelectronic problems either introducing the electro
magnetic background or applying the real structures as examples for electro
dynamic concepts. 

In the following the authors try to touch both lines: the first in connection 
with the semiconductor governing equations and the second showing various 
examples. 

Deduction of the semiconductor equations from Maxwell's 
equations 11] 12) 13) 

In this part of the paper it is shown that the governing equations can be 
deduced from Maxwell's equations in a consequent manner. The results 
obtained in this way are called classical, the others will be quasi-classical 
assumptions. Other approximations are not necessary. 

* Dedicated to Professor Karoly Simonyi on the occasion of his Seventieth Birthday 
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M axwelf s equations 

The usual form of Maxwell's equations in SI system is used. 

- - ai5 
rotH=J+ - (1) at 

- aB 
(2) rotE= --at 

div 1)= p (3) 

div 13=0 (4) 

The constitutional equations may be of different form. However up to 
medium frequencies the scalar momentarily interaction between the field 
quantities is expectable i.e. 

1)=8£ , (Sa, b) 

As for the electric current density the expressions will be introduced later. 
In the microelectronic structures 8 and J1 are assumed piecewise constant. 

Poisson's equation 

To describe the internal behaviour of a semiconductor structure 
Maxwell's equations are replaced by Poisson's equation. A rather common 
misunderstanding connected to it, that Poisson's equation can be used only for 
small frequencies. 

One can prove in an easy way the opposite, following the consequent 
derivation of this equation. 

From Eq. (4) the 
B=rot X (6) 

equality follows, where A is the vector potential. Applying Eq. (2) and 
introducing the scalar potential cp one obtains 

while 

- oX 
E= -grad cp- Tt 

a . _ 
-8L1CP-8 at dlV A =p. 

Eq. (8) returns to Poisson's equation if 

div X =0 

(7) 

(8) 

(9) 
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is valid. It means the choice of Coulomb aauge and the result is the following 

Acp(t) = _ p(t) 
13 

(10) 

where the time dependence is explicitly emphasized. 
In this way the validity of (10) can be accepted, and as a side-result the 

concept of gauge can be introduced. 
Of course, the approximation must appear elsewhere. One can try to 

formulate the magnetic equations 

and substituting to Eq. (1) 

- 1 -
H= -rot A 

p 

1 - - a aA 
- rot rot A =J -13- grad Cp-e-
p at at 

where applying the Coulomb gauge (9) again 

_ a2A _ a 
L1A-ep at2 =-pJ+epatgradcp. 

(11) 

(12) 

(13) 

The current density can be split to a transversal (divergenceless) and a 
longitudinal (curlless) part, i.e. 

J =Jr+J/=rot t -grad 1/1. (14) 

And obviously-corresponding to Eq. (9)-

(15) 

while 
a 

p grad 1/1 + ep at grad cp =0, (16) 

i.e. 
acp 

1/1= -eat + J(t). (17) 

Now one can follow the neglections. Generally Jr~O is assumed, which 
corresponds to 1 J r 1 ~ 1 J 1 I. In this case A =0 is a particular solution of Eq. 
(15) and the vector potential is neglected in the calculation of the electric field 
strength in Eq. (7). It is obvious that this kind of neglection may be proved case 
by case only. But a simple estimation can be done easily on the basis of Eq. (7). 
The second term contains time derivation, which gives a smaller order if the 
variation of the potentials is not very quick. 
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It is in good correspondence with the usual practice again, that the 
magnetic field effect is generally neglected as a second order. 

In one-dimension the whole question is irrelevant. The curlless property 
means J z = 0 and its consequence Az = 0 is correct, the calculation on the basis 
of Poisson's equation is without any assumption not speaking about the iD 
approach itself. 

The continuity equations 

What is to say about the longitudinal part of the current? Its divergence 
has the following property (see Eq. (17)) 

. - a ap 
dlV J1= -Ll'/'=e-Llrn= --

'I' at 'f' at 

i.e. the continuity equation is satisfied by the longitudinal current only. Taking 
J=J1 

. - ap 0 dlVJ+ - = at 
is a classical result as well: the overall continuity equation. 

If one takes 

and 

p=q(p-n+N) 

aN =0 
at 

can be assumed, then Eq. (18) can be split formally to two equations 

. - an 
dlVJ -q- =R 

n at 

- ap 
div Jp+q at = -R. 

(18) 

(19) 

(20a) 

(20b) 

It is obvious that (20) has meaning only in the case if R can be filled by 
physical content. It means that Eq. (20) is a classical approach as far as Eq. (19) 
can be taken as classical, but the detailed expression of R can be obtained only 
on semi-classical assumptions. 
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The expressions for currents and mobile carrier densities 

Far more difficult· to explain the expressions of currents. The simple 
equation 

(21) 

only paves the way, how to find the correct expressions in classical way. 
On the basis of physical electronics one can explain, that a must be 

proportional to the mobile charge density and the proportionality factor can 
be called mobility. However one cannot tell too much about either the 
behaviour of the mobility or its dependence on the different quantities. 

After having expressed the currents above 

I n=qnJ1.n( -grad q» 

Jp = qpJ1.p( -grad q» 

(22a) 

(22b) 

which supposes the validity of A = O. They are the so-called drift currents, the 
currents of electrodynamic origin. 

It can be demonstrated that currents can flow even when E == 0, but it is 
represented above by a faceless current J i . If one knows something about non
equilibrium thermodynamics, he or she can be led to the recognition: every 
current has to depend on the gradient of an intensive quantity. Neglecting the 
temperature, pressure etc, gradients, the only remaining possibility is the 
gradient of a non-uniform carrier distribution. 

So we can illustrate the existence of diffusion currents 

I n = qDn grad n 

J p= -qDpgradp. 

(23a) 

(23b) 

But it has to be emphasized: these equations are not classical. One can 
recognize it if we wish to express the carrier densities as the function of poten
tial. The only hopeful situation is the no-current state. Combining (22) with 
(23) it means 

q( - J1.nn grad q> + Dn grad n)=O, 

q( - J1.pP grad q>-Dp grad p)=O. 

From these two equations 

Iln 

n=AeDn'P 

(24a) 

(24b) 

(25a) 

(25b) 

With the usual approach J1.JDn=J1.p/Dp=q/kT (the validity is out of the scope 
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of EM field theory) one can write 
q 

n = niekT (q> - q>n) 

q 
p = niekT (q>p - q» 

where ni' f.Pnf.P p appear formally as constants. 

(26a) 

(26b) 

If one regards f.Pn and f.P p as variables, then the currents can be expressed as 

- kT L L 
J n = - qf1nn grad f.Pn = qf1nni q ekT q> grad e - kT q>n (27) 

- kT L L 
J p= -qf1pp grad f.Pp= -qf1pni q e- kTq> grad ekTq>p. (28) 

At this point it is suitable to introduce the concept of equilibrium. Let us 
form the product 

(29) 

If pn = nr the semiconductor is in equilibrium state. In this case f.P p = f.Pn 
= f.PP' where f.Pp is the Fermi-level. After this property f.Pp and f.Pn are called 
quasi-Fermi-level in the non-equilibrium case. 

The equilibrium is a concept out from the classical frame. 
A new question: what is the condition of the equality n = p. It turns over a 

new concept, the concept of (quasi-) neutrality. 
The neutrality means p = 0, i.e. by eq. (19) 

p-n+N=O. (30) 

Here is another point where a great deal of misunderstanding has 
appeared in the literature. The problem is: the condition of Eq. (30) is generally 
accepted but in Eq. (10) p is not counted zero, the potential is not harmonic. 

The ambiguous situation is the result of the inconsequent derivation of 
Eq. (30), which appeared heuristically. In the reality (30) is the result of the 
scaling of Eq. (10). After having applied the scale factors of Table 1 the 

Table 1 

Quantity Symbol Value 

r max (r1-r2) 
cp V, kT/q 

n,p,N ex maxlNI 
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normalized form of Eq. (10) is the following [5J 

22 f1<p=n-p+N 
where 

255 

(31) 

(32) 

If ),2~0, a singular perturbation of Eq. (31) occurs. In the case a~ 1 the 
value of 22 can ,be very small. 

A numerical example 
1=2,5 Ilm 

a=102°cm- 3 

for Si 22~4·1O-10. 

In any point where the doping profile and therefore the potential changes 
slowly the solution can be searched in the following form 

where <Po belongs to the solution with 2 =0, i.e. 

no-po-N=O 

(33) 

(34) 

i.e. the neutrality is valid as a very good approximation. On the other hand if 
the profile and potential changes rapidly i.e. in the p - n junction the potential 
must be searched as 

(35) 

where t is the distance from the internal layer. This solution forms a rapid 
change around the layer. Here the assumption of quasi neutrality and therefore 
the approximation by the zero order solution is not valid. The details require a 
lot of mathematics and the results can be obtained by computer only. 

An important result has 'been obtained: while the approximation of 
equilibrium is not dassical, the approximation of neutrality is a classical 
electrodynamic one. 

A,survey of elementary electromagnetic examples 

It is unnecessary to repeat here the basic tasks in the theory of 
semiconductor devices which are solved by applying the fundamental ideas of 
electromagnetic theory. The most important among them are e.g. the MOS 
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capacitor, the punch-through and saturation in the operation of MOS 
transistors or the bulk resistance. Several of them are good analytic examples, 
others can be applied as illustrative ones of the utilization of numerical 
calculation methods. 

In the following we wish to list several less known applications of 
foundation of electrical engineering in the field of microelectronics. 

1. Capacitance calculations for VHSIC-s [6]. The speed of operation is 
strongly dependent on the electrode and island capacitances. 

2. Interconnection modeling in monolit and hybrid IC-s. The intercon
nections form a multiwire transmission line system. One can model them either 
as a transmission line (practically a system of distributed RC lines), or as a RC 
lumped network. In the latter the capacitance calculations, the lumped 
equivalents of the C and R matrices and the approximations for the largest 
characteristic time are the goals [7~10]. 

Similar tools can be applied for the calculation of the effect of the 
relatively large contacts in microcircuits, [11]. 

3. Conformal mapping. Application for calculation of layer resistances 
and contacts [7]. MOS transistors of complicated geometry [12]. Bipolar 
transistors-base resistance [13J and'! f recovery time. 

4. Capacitance calculations of active non linear elements. Symmetrical 
and non-symmetrical capacitance matrices [2]. 
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