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Summary

The paper gives a method for the determination of the quasi-stationary electromagnetic
fields brought about by a harmonically varying current flowing in a ferromagnetic conductor of
arbitrary cross section. Nonlinearity is neglected and a two-dimensional model is employed. The
quasi-stationary field in the conductor is obtained by the solution of the differential equation for
the vector potential at homogeneous Dirichlet boundary condition. The method presented
yields a solution satisfying the differential equation approximately and the boundary conditions
on the analytical or analytically approximated bounding curve exactly. The determination of the
function satisfying the differential equation is reduced by variational calculus to finding the
extremal function of a complex functional. Applying Ritz’s procedure, the potential function is
approximated by a function series. The approximating functions are constructed with the aid of
R-functions to ensure that they satisfy the boundary conditions exactly. The method isillustrated
by an example.

Intreduction

The present paper deals with the determination of the quasi-stationary
electromagnetic field brought about by a harmonically varying current flowing
in a conductor of an arbitrary cross section. The material of the conductor is
assumed to be highly permeable, nonlinearity is however neglected. The
magnetic field is presumed not to leave the ferromagnetic medium. The
problem examined is two-dimensional. The curve bounding the cross section of
the conductor is assumed to be analytical or to be approximated by an
analytical curve. Complex notation is used for harmonic time variation. The
determination of the quasi-stationary field in the conductor leads to the
solution of a differential equation related to the vector potential at Dirichlet
boundary condition.

Several methods are found in the literature for solving the differential
equation obtained for the vector potential at various boundary conditions. The
methods of integral equations, of finite elements and of global elements are the
most frequently used procedures. These methods yield solutions satisfying the
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differential equation approximately and the boundary conditions either
approximately or exactly. The quasi-stationary field of a non-ferromagnetic
conductor has been determined at the above assumptions in [8] and [9].

The solution obtained in this paper satisfies the differential equation
approximately and the boundary conditions exactly. A variational method
with global approximation is employed [3], [4]. The determination of the
function satisfying the differential equation is reduced to finding the extremal
function of the complex functional given in [8]. Applying Ritz’s procedure, the
potential function is approximated by a function series. R-functions are used to
ensure that the coordinate functions satisfy the boundary conditions exactly.

The approximation of the method is presented in an example. A desk
computer has been used for numerical computations. In knowledge of the
solution, the current density and flux distribution in the cross section of the
conductor has been plotted.

Introduction of the vektor potential. Boundary conditions

Consider a conductor of arbitrary cross section (Fig. 1.a). The material of
the conductor is of conductivity ¢ and permeability u. In the isolator
surrounding the conductor ¢,=0 and p,<pu. No magnetic saturation is
assumed to occur, thus the nonlinearity of the ferromagnetic conductive
medium is neglected. A harmonic current i(t)=1I,cos wt is flowing in the
conductor in axial direction. The axial variation of the electromagnetic field is
neglected, thus obtaining a two-dimensional problem of translational
symmetry. In Fig. 1.b,  denotes the cross section of the conductor (the planar
region examined) and I is its bounding curve. To enable the application of R-
functions, I" is presumed to be analytical or to be approximated by an
analytical curve. The magnetic field in the ferromagnetic medium induced by
the displacement current density outside the conductor is neglected.

a) b)
Fig. 1
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The electromagnetic field in the conductor is quasi-stationary. The
equations describing it are obtained from Maxwell’s equations [1], [2]. The
vector potential is introduced by

B=curl A, M
as usual.
The problem investigated being two-dimensional, the vector potential A
has but one component: A= A(x, y) e, where z is the axial direction. Since no
variation is presumed to take place in direction z:

div A=0. 2
Electrical field intensity can be obtained as
E=—jwA (3)

whereas A is the solution of the differential equation [1]:

% curl curl A=J. 4)

In (4)
Jd=J, or J= —jwcA (5)

if the current density distribution in the conductor is given as J=J, or if it is
unknown.

The boundary conditions to be satisfied by A are obtained by the
following considerations.

Due to the high permeability of the conductor, no flux is assumed to leave
the ferromagnetic medium. Thus, the curve I" (Fig. 1.b) is a magnetic line of
force. This means that flux density has a tangential component only on the
curve, its component normal to the curve is zero:

Bn|. =0 (6)

where n is the outer normal of I'. Since the field components are expressed with
the aid of the vector potential, this boundary condition is formulated for A.
Taking (1) into account:

curl An|.= <n€—A —‘Ci—é)n[r= Zﬁ
ét é ot

where 1 is the tangential unit vector of I'. Hence, the vector potential is constant
along the curve I

=0 7)

r

Alp=Agpe.. _ (8)
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This is a Dirichlet boundary condition for the vector potential [3], [8]. The
constant A, is not determined by the equations therefore it can be freely
selected. The most simple choice being to take A, zero, a homogeneous
Dirichlet boundary condition is prescribed for the vector potential:

Alr=0. )

Construction of the solution
Decomposition of the field

The application of variational methods to the solution of the differential
equation (4) with the current density unknown leads to numerical problems at
low values of the angular frequency . The current density in the conductor is,
according to (3) and Ohm’s law:

Jd= —jwcA. (10)

In case the total current of the conductor is given, low values of w result in high
vector potential values which may cause overflow on digital computers. This
problem can be eliminated by decomposing the electromagnetic field into the
sum of a sourceless and a curless part as in [11] and [8].

The equations of the sourceless and curless field, the introduction of the
vector potential as well as the differential equations governing it are given in
detail in [8] and [9]. Accordingly, the differential equation to be solved is

1
—curlcurl A=J,—jwcA (11)
1

where J, is a current density of uniform distribution which is assumed to be
known in the course of the differential equation. In knowledge of the vector
potential solving (11) at the boundary condition (9), flux density is obtained
from (1), electrical field intensity is

E=J /o —juA (12)

and the current density in the conductor is
J=J,—jocA. (13)
At the solution of the problem, the current of the conductor is thought to

be prescribed. Its value is, according to (13):

Ipe.={(Jg—jwoA)dQ (14)
)
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where I, is the complex amplitude of the harmonic current flowing in the
conductor. The value of the parameter J, in the differential equation (11) is to
be chosen to have the Eq. (14) fulfilled.

Application of the variational method

The solution of the differential equation (11) is reduced by variational
considerations to the determination of the extremal function of the complex
functional

W(A, A)= | [(udo—juowA)A —curl A curl A]dQ (15)
)

introduced in [8] where A denotes complex conjugate. The one-dimensional,
complex vector potential of two variables is approximated according to Ritz's
method by a linear combination of the first n elements of an entire function set

[5]:

n

Ax An = e: kzl ay fk(x’ _}’)WD(X, .}/) (1 6)

where f,(x, y), k=1,2, ..., nis the k-th element of the approximating function
set, wp(x, y) is a function constructed with the aid of R-functions [13], [14].
wp(x, y) ensures that each term in the approximating series satisfies the
homogeneous, Dirichlet boundary condition (9) prescribed for the vector
potential. Accordingly, wp(x,y) must be selected so that it is a twice
differentiable function of positive value in the interior of the studied region, and
zero on the curve I’ bounding the region:

wp(x, Ay)>0, if (x,y)eQ (17)

wp(x, y)=0, if (x,yerl

The coefficients a;, k=1, 2, ..., nin (16) are complex quantities.
Substituting the approximating sum (16) into the functional (15) and

differentiating the functional with respect to d,, k=1, 2, ..., n, the complex

column vector a of the coefficientscan be derived as a function of the parameter

Jo from the equation

(M, +joucM;)a=puJ N. (18)

In (18), the square matrices M, and M, are of order n, and i-th element of their
k-th row is

M, (k, )= f[} curl (wy, fre.) curl (wy, fie.) dQ (19)
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and Mk, D)= | (w0 fi) (45 402 (20)

respectively. The k-th element of the n-order column vector N in (18) is
N(k)= rI)Wka dQ. (21)
Applying the approximation (16), the current of the conductor is, using (14).
[y=J,Q—jwo J)él fowpa, dQ (22)

Taking (21) into account, this current is

which allows J, to be expressed and eliminated from (18):
[ 1

In the precedings, + denotes transposition.

Hustration of the method. Presentation of results

Numerical calculations have been carried out for the I cross section
conductor shown in Fig. 2. The conductivity of the conducting medium has
been chosen as ¢=1/160 10° S/m and its relative permeability as u,=40.

With the geometrical dimensions a=b =30 mm, d =10 mm, the analysis
has been carried out at frequencies f =0, 50, 100, 150 and 200 Hz and with an
exciting current [, =2000 A.
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The approximating functions have been constructed of Chebishev
polynomials as

ﬁc(x’y)=T2i(x/a)T2j(y/b)9 isjzoa 1727 k=1327 R

where T;(¢) denotes the i-th order Chebishev polinomial of the first kind with
variable ¢,

The function wp(x, y) satisfying the condition (17) has been constructed
with the aid of R-functions using [6], [7] as follows.

The planar region @ shown in Fig. 2.b is formed by the section of the
subregions 2, and €, shown in Fig. 3.a and 3.b:

Q=0,nQ,.

The subregion 2, is constructed as the section of the planar regions
Qy1(a*~y*20) and Q,(b* —x*20):

Q=0,,nQ,

whereas the subregion , is the union of the planar regions Q,,(y>*—h*=0)
and Q,,(d*—x?=0):

Qz=Q21UQ22.

The subregion 2, is described by the R-function of the R-functions
w,,=a*—y? corresponding to Q,, and w,,=b*—x? corresponding to Q,,:

Wi =W;1 AWy,

The subregion €, is given by the R-disjunction of the R-functions w,, = y* —h?
corresponding to £,; and w,,=d?—x? corresponding to Q,,:

WZ=W21 VW22.

4 Periodica Polytechnica El. 29/1
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Fig. 4. Distribution of the amplitude and phase of current density along the x axis



DETERMINATION OF QUASI-STATIONARY ELECTROMAGNETIC FIELDS 51

e
\

J

Fig. 5.a. Flux lines at /=0 Hz

The function wp(x, y) satisfying the condition (17) is, in accordance with the
expressions of w, and w,:

Wp=Wi AW, =(W1; AW} A(Wy VW)

In the course of the analysis, an approximation of order n=9 has been
employed.

In the knowledge of the vector potential, the distribution of the current
density in the conductor can be given. In Fig. 4, the current density at y=0 has
been plotted against the coordinate x at frequencies f =350, 100, 150 and 200
Hz. The variation of the amplitude and phase of current density has been
plotted separately. The skin effect is easily recognized in the diagrams.

In Fig. 5, the flux distribution in the conductor has been plotted at
frequencies f =0, 50, 100, 150 and 200 Hz. The flux lines in Figs 5.a—5.¢ have

4*
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Fig. 5.b. Flux lines at [ =50 Hz

been selected so that the magnetic flux between any two lines of force is equal in
each case. Therefore, fewer flux lines have been drawn at higher frequencies
indicating the decrease of the intensity of the magnetic field with increasing
frequency.

In the knowledge of the quasi-stationary field in the conductor, the
impedance of a unit length of the conductor has also been determined. The
resistance of unit length has been computed from Joule-loss as

I
=
°|
8




DETERMINATION OF QUASI-STATIONARY ELECTROMAGNETIC FIELDS 53

(—

Fig. 5.c. Flux lines at /=100 Hz

and the internal inductance from magnetic energy [1] as

L= [ ulH|* dQ.
o

1
1o

The values of the resistance and internal inductance at the frequencies
examined are shown in Table 1. The ratio d/d at each frequency has also been

indicated in the Table 1. where d=./2/uwo is the skin depth. The ratios of
the resistance and internal reactance against the D. C. resistance have been
plotted in Fig. 6 as functions of frequency.
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Fig. 5.d. Flux lines at =150 Hz

To check the results, it has been assumed on the basis of the flux plot that
atfrequency f =200 Hz only the belts carry current. In this case, the ratio of the
D. C. resistances of a ring of depth ¢ of the belts and of the entire conductor is
R;/R,=13,38. This assumption is quite correct at the frequency in question [ 1],
but is bound yield a higher value of the resistance due to the lower equivalent
cross section taken into account. Hence, the value R/R,= 3,25 appearing in
Table 1 seems to be a reasonable approximation.

- The analysis has been carried out on a desk computer EMG 666. The
diagrams have been drawn with the aid of a plotter NE 2000.666 connected to
the computer.
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Fig. 5.e. Flux lines at f =200 Hz
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Table 1

f (Hz) R (Q/m) oL, (©/m) R/R, oL/R, djs

0 081074 0 1.00 0 0

50 1.2963 107 9.9879 1075 1.62 1.25 222

100 1.810010°% 14932107 226 1.86 114

150 2.2815107% 1.7860 107 2.85 223 3.84

200 26005107 1.9349 1074 3.25 242 4.44
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