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Summary 

Since the time that man first became involved with measurements, he has had to deal with 
the problems caused by discrepancies in different measurements of the same object. The attempt 
for reducing the effects of these discrepancies had led to the development of estimation theory. 

The discrepancies or errors are generally regarded as being unknowable or random. To 
reduce their effect with respect to the quantity of interest one is led to the problem of defining an 
estimator. 

The problem of estimating parameters from observational data can be traced from 
antiquity. From about 300 B.c. Babylonian astronomers dealt with this problem. Up to present 
times astronomical studies have provided a major stimulus for the development of estimation 
theory. In the 18. and 19. century we find essential contributions by Bernoulli, Euler, Legendre, 
Gauss and Bayes. In these days we recognize wide applications in the space technology, control 
and measurement theory. 

Definitions 

Sample. The outcome of an experiment, performed under a given set of 
conditions, is called a sample. Generally a sample is a set of measured 
variables Yi' i= 1 ... n. We write a sample as a vector: 

T Yl ... Yn~Y . 

Estimator. An estimator b = b(y) is an algorithm using the sample to calculate 
approximate values of a set of unknown parameters b 1 ... bk = bT, 
k::::;n. 

Obviously, for one experiment a large number of estimators may be 
invented. For example, take k "good measurements" out of the sample y and 
calculate the k unknown parameters b. But this procedure drops off the 
information of the (n - k) events of the experiment here considered to be "bad". 

Estimation theory deals with all kinds of estimators and gives criteria for 
optimal or at least "good" estimators. The performance of estimators is judged 
with the following qualities: 

Bias of estimators 

An estimator is called unbiased if 

E{b} =E{b}. (1) 
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An estimator has a bias r(b) given by 

r=E{b}-E{b}. (2) 

E { } is the expectance operator: 

E { ... } = S ... S ... p(b, y)dydb ; 

dy=dYl ... dYn; 

db=db 1 ... dbk • 

The feature "unbiased" guarantees that in the case of a large number of tests 
j = 1 ... m under identical conditions the mean of the estimates bj tends to 
b with m--7 00. 

Another appreciated quality is that the deviations of repeated estimations 
bj are to be small. This challenge leads to the definition of efficient estimators. 

Efficient estimators 

For the sake of simplicity b is assumed to be unbiased. A measure of 
performance with respect to the deviations is the covariance matrix of an 
estimated vector b 

E{(b-b)(b-bf"}=Vb 

An estimator bo is called to be efficient, if for all other estimators bi 

Vb()~Vbi (3) 

(The covariance matrix Vb is a positive definite matrix. A positive definite 
matrix A is greater than a positive definite matrix B, A> B, if for any vector 
x#O xTAx>XTBx.) 

Unbiased and efficient estimators are in some sense ideal estimators. but 
these qualities are missed in general. Very often consistent estimators are 
reliable and satisfying. 

C onsistellt estimators 

An estimator is called to be consistent, if with increasing sample size n the 
algorithm bn = bn(Yl ... Yn) converges in probability to b: 

!im bn = b (4) 
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(lim = limes in the mean, i.e. lim E {bn} = b, no bias for n -t 00, and lim V b
n 
= 0, 

all covariances of the parameters vanish for n -t (0). 
All definitions above were introduced by Fisher [1]. Additionally, he 

gave the definition of a sufficient estimator. The basic objection of estimation 
theory is to determine a function of the measured data, the sample, which 
approximates the unknown parameter. Such a function <J>(y) is called a statistic. 
Obviously, the statistic should use as much "information", whatever this is, 
about b as is contained in the sample itself. A first step in the systematic 
development of estimators using all information of the sample, is the class of 
sufficient statistics. 

Sufficient estimators 

A statistic <J>(y) or b(y) is said to be sufficient, if the ha posteriori density" of b, 
given <I>(y) is equivalent to "a posteriori density" of b, given sample y: 

p(b I y) = p(b I <J>(y)) . (5) 

Another equivalent formulation is (the proof is straightforward), using the 
Bayes' rule: 

p(y I <I> , b) = p(y I <1» . (6) 

From Eq. (6) we recognize, a statistic <I>(y) is sufficient, if the sample y or 
any other statistic <I> does not provide an additional information about the 
distribution of the variables b. 
Examples: Estimation of the voltage of a battery (Fig. 1). 

b~Yi 
~i=l ... n 

Fig. 1. Voltage of a battery 

We use the a priori information that the voltage b will be constant but 
unknown during the experiment. The noise ni is additive in the signal: 
Yi=b+ni. The mean of the noise shall be zero, the variance constant 
and the measurements uncorrelated: 

E{ni}=O, E{n i nj }=u26ij; 

{
1 i=j; 

6ij= 0 i#j. 
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In the example we choose a linear estimator, i.e. 

(7) 

The bias of the estimator: 

E{b} =E{l'aiYi} =bl'ai+l'aiE{nJ =bl'ai . (8) 
n 

The estimator is unbiased, if L ai = 1. 
i= 1 

The variance of the estimator: 

Vb= E {(b - 6)2} = E {(b -l'ai(b + ni))2} = (J2l'ar.. 

The best unbiased estimator in the class of linear estimators is, remember the 
constraint l'ai = 1: 

~ (J2 
Vb =-

best n' 

Efficiency: This question will be answered later on in section 2. 
Consistency: The unbiased estimator (7) is consistent because 

2 

lim E {6n} band lim (J =0. 
n-co n-oo n 

Sufficiency: The estimator for b is following (7) and (9): 

6= ~ l'y .. 
" n 

(9) 

(10) 

for the variance (J2 we choose an estimator 8-2 = ~ l'(Yi - 6 f. The nOIse 
n 

ni = Yi - b is assumed to have normal distribution: 

P(Y1 b,(J2)=aexp { - 2~2l'(Yi-b)2}. (11) 

It is true that 

l'(Yi- b)2 = l'(Yi-6 + 6 - b)2 = l'(Yi- 6)2 + n(6 - b)2 + 2l'(Yi-6)· (6 -b)= 
(12) 



FUNDAMENTALS OF PARAMETER EST/MAT/ON 99 

Using Bayes' rule: 

one yields 
fi2n (b -6)2 

2 a e- 2a2 -n~. p(b, er2) 2 "2 

p(b, er Iy)= SS p(b, er2)p(Ylb, er2)dbder2 p(b, er 16, er ). (13) 

The last equation is established with Eq. (11) and (12). p(Ylb, er2
) is expressed in 

terms of 82 and 6 (Eq. (12». 
Eq. (13) corresponds to Eq. (5) so the estimators for 6 and er2 are sufficient. 

Optimal estimators, lower bound for covariance 

In probability theory all about the process is known, if the distribution or the 
probability density function - p.d.f. - is known. In estimation theory we have 
an optimum of information about the process, if the class of the p.d.f. is known. 
The p.d.f. depends on the random variables y of the sample and further on the 
unknown parameter b. The problem in this field is, to find out which parameter 
vector 6 is valid for our experiment. We start with p(ylb) and adjust the 
parameter vector b~6 in such a way that 6 fits best our experimental results. 

A measure how good a parameter vector b l matches the random process 
given by p(y, bo) is the H-function introduced by Boltzmann in statistical 
mechanics: 

The H-function is related tightly to the entropy, introduced by Shannon in 
communication theory in 1948. 

The H -function is maximized by varying the parameter vector b I . 

To become familiar with this definition, let us take one parameter b, the 
mean of the population YI ... Yn' and let us start independent tests. 

The idea is to adjust the p.d.f. in such a way, that probability of all possible 
tests is a maximum. Instead of working with the densities p(ylb), we may 
maximize the function log p, because log is a monotonic function. In our 
example of independent tests, we have 

n 

p(Ylb)= fI p(Yilb) and 10gp(Ylb)=L'logp(y;lb) 
i= I 

Figure 2 shows, how P(Yb b) is adjusted in the case of3 tests to get a maximum. 
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log P (Yi ,b) 
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Yz Yl Yo 

}; - - - = ::>. log P (Yi / bO ) = mox 

};- = ::>. log p(y;lb1 ) 

<:: ::>. log P(Yi/bO) 

Y 

Fig. 2. Adjusting parameter b to bo to get a maximum of probability 

If we start a large number of tests, it is comfortable to calculate with 
relative frequencies h(y)Lly. h(y)Lly is the relative frequency of all events having 
a result of y between y and y + LI y. 

The H -function is calculated with respect to the classification ofthe above 
results by: 

H = L log p(y I b)h(y)Lly . 

For a very large number of tests h(y)Lly may be replaced by the density p(y) 
h(y)Lly~p(ylbo)dy. The function to be maximized is 

H = J log {p(y, bi)}p(y, bo)dy. 

It is easy to show mathematically that the H-function has a relative maximum 
for bi = bo: 

op 
oH f Cbi ~b = (b) p(y, bo)dy , 
o 1 P y, 1 

. o2H . 
For a maXImum, "b 2 <0, we obtam 

o 1 
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8
2
H f{ 8 }2 "b2 I = - -;:;----b log p(y, bo) p(y, bo)dy::; 0 . 

o 1 b I =bo 0 1 

(14) 

It is really appealing to formulate a problem as a principle of extremum. In 
natural science this way has an old tradition, remember for example mechanics 
with the Hamilton-lacobian equations, thermodynamics with the maximum 
of entropy or optics with the principle of Fermat. But with the problem of 
designing a practical estimator this principle does not help, because the wanted 
quantity ho is hidden in p(y, ho)dy. But it is extremely useful to elaborate the 
lower bound of variances. Another application is the use in Kullback's 
information integral [2]: 

(15) 

By (15) the "information distance" between a density with bo and b I may be 
calculated. 

For the sake of simplicity again, only one parameter b and an unbiased 
estimator is assumed, then 

S (6 - b)p(Ylb)dy =0. 

Differentiation with respect to b gives: 

(' 
S (6 - b) cb log (p(ylb»' p(Ylb)dy = 1 . 

_________ '==~=v==-=-" 

x y 

Applying the Schwartz-inequality: 

E{X2}E{y2}~E{xy}2 , (16) 
thus yielding 

[f 
(' J2 f f(ClOgp)2 1= (6-b)8b{logp}pdy ::; (6-b)2pdy \---ab pdy. ( 17) 

For the lower bound U~ff of the variance, using Eqs (14) and (17) we get 

J 1 
u;ff ~ ---:-;82-=H-::-:(-=-b ,--6") - (18) 

862 Ib b 

The Schwartz-inequality has the equation sign only, if x = cy or in our case 

8 
c(6(y)-b)= 8blogp(Ylb). (19) 
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Example: The former example, measuring the battery voltage, is used again. We 

take the best linear estimator for the mean 6= 1 Ly;. the noise ni = Yi - b 
n 

normally distributed again, so yielding: 

p(Ylb)-exp { - 2:2 L(Yi-b)2}; 

(:blogP(Ylb)Y = {L(Y;~b)r; 

E {L(Yi- b)}2 = ~. 
(J2 (J2' 

and with Egs (17) and (18): 

(J2 
2 6-(J eff -

n 
(20) 

Comparing with Eg. (9) we shall find the estimator 6 = ~ LYi to be efficient. 
n 

Or using the condition (19) for the efficient estimator 

~ 1 
c(6-b)= :b log p(Ylb)= (J2 L(Yi-b), 

the condition is fulfilled with c = r~ and 6 = ~ LYi' 
(J n 

For a parameter vector b, the lower bound of the covariance matrix Vb 
was given by Cramer and Rao [3]: 

(21) 

The matrix J is the Fisher information matrix: 

J E {[ :b l;g p(y, b)] [:b log p(y, b)] T} . 

Formula (21) shows identity, if and only if 

:b In p(ylb)=c(b) [b-bJ. (22) 
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Practical estimators 

The most fruitful approach to get practical estimators is the loss-function 
c(b- b) introduced by Bayes. The expectation of the loss function is called 
risk. The risk is minimized by the choice of b, 

r(b - b) = E {c(b - b)}::b min. (23) 

The cost function will be chosen freely. The function c usually has a minimum 
for b=b. 
Remember the Bayes' rule, p(b, y) = p(b I y)p(y), and 

b = b(y), 

thus yielding 

a 
ab E {Ey{c(b-b)IY}} =0, (24) 

or 

(25) 

Interpreting equation (25), one gets the result: the best estimate in the sense of 
Bayes is a conditional expectation. 
Very common is the quadratic loss function (G is the weighting matrix): 

c(b- b) =(b- b)TG(b- b). (26) 

Applying this loss function, one yields the minimum mean square estimator 

The MS-estimator is unbiased because 

E{bMS}=E{E{bIY}}=E{b} . 

The MS-estimator is independent of the weighting matrix G in Eq. (26). 

(27) 

This quality is very important in practice, for example, if we are only 
interested in one parameter hj of the vector b. The minimum mean square 
estimator in this case is again 

The minimum mean square estimator is optimal not only for a quadratic 
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function c, but for 2 classes L1 and L2 of loss functions (Sherman [4J, 
Mereditch [5J). 

{
c(6- b) is symmetric; 

L1 c(6-b) is convex; 

L {c(6 - b) is symmetric; 
2 c is nondecreasing, 

I.e. C(61-bl)::;c(b2-b2) 

if (h1 - b1f(61 - b1) 
::s; (62 - b2f(h2 - b2) . 

For this 2 classes 6MS is the optimal solution if 

lim c(6-b)p(bIY)=O 
Ibl ~:c 

An important representative of class L2 is the uniform loss function. 

4b-.. k b-b 

Fig. 3. Uniform loss function 

The risk r is: 

:c 

r= J p(bly)db-kp(bly), 

This estimator is called "maximum a posteriori" or MAP-estimator. 

(28) 

Example: The mean b of a normal distribution N(b, u;) has to be 
estimated, the sample of uncorrelated measurements is yT =(Y1 ... Yn). The a 
priori distribution of b is known: normal distribution N(O, u;). The variances u~ 
and u; are known. . 

For the MAP estimator the a-posteriori-density p(bly) is wanted. With 
the Bayes'rule we get: 
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p(bly)= p(ylb)' p(b)jp(y), 

a p( b I y) = a (I b)' (b) = ab ab p y p 
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(29) 

In the case of large samples, /1-+ JJ the estimator tends to fi = 1 I'Yi' It is 
11 

the same estimator we had in section 1 Eqs (7) and (9). The influence of the a 
priori information (0, all diminishes with the increasing sample size. 
M aximum likelihood estimator (M L-estimator). This estimator is very weIl 
known, some favourable features like asymptotic efficiency for large samples 
have to be mentioned. 

The estimator is defined by the likelihood equation 

a 
'"'blogp(Ylb)=O. 
o 

(30) 

Similar to the assignments of H-function or information integral by Kullback 
Eq. (15), the parameter vector b is adjusted so that the density has a maximum 
for the given sample y. Maximum-likelihood estimators belong to the class of 
estimators with the uniform loss function, but no a priori information p(b) is 
used or available. This can be easily shown with Bayes' rule: 

log p(bl y) = log p(y I b) + log p(b) -log p(y) . 

The MAP estimator is, following Eq. (28): 

a a a 
ablogp(bly)=O= ablogp(Ylb)+ oblogp(b)=O. 

If there is no a priori information, the p.d.f. p(b) is very flat and wide and so 

op(b) -+0 
ab . 
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The ML-estimator is one of the most developed estimators with excellent 
performance. For large samples, n-+ 00, the ML-estimator is asymptotically 
unbiased and efficient. 

"] ap 0 
1\1i'----- .. b 

Fig 4. A t1at and wide probability density function P(b) 

The proof cannot be given here, but remember the Cramer-Rao 
condition (19): 

If the estimator is consistent, b - b vanishes asymptotically and the condition 
turns over to likelihood equation. 
Examples for a ML-estimator: 

A linear process-model is assumed: y = Xb + n. The noise n; is normally 
distributed, the measurements are uncorrelated, the variances are known: 

E{n;nJ = (J20ij' 

1 ( Ib)
- (y-Xbf(y-Xb) 

og p y - 2(J2 + c . 

The function to be minimized is, besides some factors, nothing else as thesum of 
least squares. Minimizing log p(y I b) leads straightforward to the famous least 
square estimator introduced by Gauss (Eq. 42). 

Linear estimators 

Some properties of linear vector spaces 

The following operations are admitted: 

addition x' + y' = y' + x' = Z' 

norm, length of a vector (x', x') = 11 X/1l2 

scalar product of vectors (x', y') = (y', x') = IIxllllyll cos e 

Icos el:::; 1 

(31 ) 
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(Vectors in this section are written x' to make differences with the vectors y, 
used in matrix calculus before!) 
Vector space of dimension 11: 

11 linear independent vectors x; form a linear vector space v" of dimension 
11. Any vector z' of this space can be written by z' = I'CiX;. The independent 
vectors x;, i = 1 ... n are said to form a base of v". 

A set of n vectors x; is said to be linear dependent only if I'cix; =0 for any 
ci#O. 
Orthonormal base. A special base in a vector-space Vn is an orthonormal base e; 
with the definition 

_ {I for i=j 
(e;, ej)=tJii , Oi;= • 

. 0 lor i # j . 
(32) 

Principle of orthoyonality or projection theorem: 
Let be X'I E Vn and X'I = I'cie; and x' another vector not necessary an 

element of v", x' E VnI' m '?n. 

The problem considered here is how to approximate the vector x' by an 
optimal vector X'IO E v~ so that the norm of the error vector x~ = x' - X'I is a 
mllllmum. 

We get the norm of the error-vector: 

Ilx~II 2 = IIx' - X'I 112 = ((x' - I'cie;), (x' - I'cie;)) 

= 11 x' 112 - 2I'ci(e;, x') + I'c? 

= 11 x' 11 2 + I'((X', e;) - ci -I'(x', e;f . 

Ilx~11 is independent of the choice of base e;. 
The absolute minimum for the norm of x~ is obtained, if Ci = (x'. e;) and 

following this, the optimal vector X'IO gets 

(33) 

Straightforward, it follows: 

Bessel inequality: Ilx~II'?I'c?; 
(34) 

Principle of orthogonality: ((x' - X'I 0), e;) = 0 . 

In the case of the optimal vector X'lO the error vector (x' - X'I 0) is orthogonal to 
any vector of space v". The optimal vector X'I 0 is the projection of vector x' onto 
the vector space v". 

2 Periodica Polytechnica El. 28/2-3 
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The same axioms, operations and definitions, we used in the linear vector 
space, are valid to stochastic variables. 
For example: A stochastic variable X corresponds to a vector x'; 

the norm is given by E{x2
} 0-01Ix'11 2 ; 

addition: E{x} + E {y} = E {y} + E{x} 0-0 x' + y' = y' +x'; 

s~alar product: E{xy} 0-0 (x'y'); 

Schwartz inequality: 

E{xYf~E{X2}E{y2} o--() (x',y')2~llx'11211y'112. 

For stochastic variables the principle of orthogonality is given by (b stochastic 
variable, b = b(y) stochastic variable): 

E{(b-b)b}=O or E{(b-b)<P(y)}=O (35) 

with <P(y) any function of the sample vector y. 
Example: In the class of linear estimators, an estimator for the mean b 

shall be designed: b = Lct.iJ'i. 

Process-model: Yi = b + ni · 

The following properties are known: E{nj}=O: E{n;n j }=u26ij; 

E{b 2 }=Kb' E{n;b}=O. 

Using the principle of orthogonality (35): 

E {(b - b)yT} =0 

E{ I ct.;(b+n;)(b+n)}=E{b(b+n)}, 
; 

j= 1 ... n 

or 

(36) 

The result is the same as in the example for the MAP-estimator section 2, Eq. 
(29), if Kb = u;. 
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Gauss-M arkoff-estimators 

The general formulation of a linear estimator is 

b=Qy. (37) 

Applying the principle of orthogonality (35) one yields: 

and 
. h K rb Ti. WIt by=EI. Y J 

With the assumptions E{n}=O; E{nnT}=yn , E{nbT}=O and E{bbT}=Kb 
and the linear process model y = X b + n, the Gauss-M ark off-estimator can be 
written: 

(38) 

The inverse of the matrix { } is cumbersome to calculate because of the large 
matrix size n x n. 

Here a matrix inversion lemma is helpful: 

AB- 1 =C- 1 D is valid ifCA=DB. 

This can be easily verified by multiplying with C from the left and with B from 
the right. With A=Kb X

T and B=(XKb X
T + Yn ) we get CKbXT =DXKb X

T 

+DYn • 

Let be C=C 1 +C2 , one yields 

D=C2 Kb XT y n-
1

, 

Cl =DX=C2 Kb X T Y n 1 X. 

Choose C2 =Kb 1 and get Cl =XTy;l X; D=XTy e-
l . 

The equivalent, more handsome formulation for the Gauss-Markoff
estimator is then 

(39) 

If there is no a priori information, i.e. E {bf} -+ x and E {bib j} = 0 i =1= j, then Kb- 1 

vanishes: 

(40) 

2* 
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The result is the so-called minimum variance estimator 
t TIT 
DMV = (X V n X) X V n Y (41) 

with the covariance matrix V 17= (X T V n- 1 X) 1 = J - 1 . 

In the case of normal distribution of the noise, the estimator is efficient 
and Vb is proportional to the inverse of the Fisher information matrix J. 

If the noise n is uncorrelated, i.e. V n = u2 I, the famous least squares 
estimator is received: 

(42) 

with the covariance matrix V 17= (X T X) 1 u2 = u2 J - 1 . 

V 17 is again the inverse of Fisher's information matrix J and the estimator 
is efficient in the case of normal distribution of the noise. All examples before 
with uncorrelated noise belong to the linear Gauss-Markoff or least-squares 
estimators. 

Some intercorrelations 

The paper deals with the basic ideas of the estimation theory. Only a few 
ideas are really fundamental. But the number and the names of the different 
estimators may be confusing for beginners. So some intercorrelations between 
the most important estimators will be given without any pretension for 
completeness. 

If there is a linear process model and a normal distribution of noise nand 
parameter-vector b, the Gauss-MarkofT-estimator is efficient and so the best. 
The Gauss-Markoff-estimator, the MAP- and the Bayes MS-estimator are 
identical. 

In the case of other distributions, the Gauss-Markoff-estimator is the 
best linear estimator. 

ML-estimators, no a priori-information is needed supply an 
asymptotically unbiased and efficient estimate. 

For normal distributions the ML-estimator is identical with the 
minimum-variance-estimator. The minimum variance-estimator is the best 
linear estimator at all, if no a priori information is available. 

If there is no knowledge of the density function of the parameter vector b 
and as well no knowledge of the covariance matrix V n of the noise, the best 
linear estimator is the LS-estimator. If the noise is uncorrelated and normally 
distributed, the LS-estimator is unbiased and efficient and identical for the 
Bayes MS-estimator and the ML-estimator. 
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