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Summary 

This paper gives a survey of the methods which can be used to determine the parameters of 
certain exogenous process models. The least squares estimation method is described explicitly 
and properties of the estimator arc mentioned from the view of digital filter theory. It is further 
shown how the dynamic properties of time invariant linear systems can be improved by the use of 
the described estimation procedure. 

Introduction 

In this paper we shall be concerned with sampled signals which can be 
represented by the discrete time function 

" 
y(k) = I 0iQ7 + e(k). ( I ) 

i= 1 

The variables bi' qi, i= I, ... , n, are assumed to be non-random, where qi=l=-qj 
for i=l=-j and e(k) will be a zero mean stochastic process. Eq. (I) represents a 
special case of an exogenous process model. 

Let us consider for a moment the homogeneous Il-th order difference 
equation 

11) o. (1) 

The z-transform of the coefficients (li is 
11 

A(z)= I {li Z i 
i=O 

with (lo = 1. Assuming that the 11 zeros z l' ... z" of A (z) are different, we obtain 
for the general solution of the difference equation 

" 
x(k)= I :xi z7 

i= 1 

with arbitrary coefficients :Xi' Therefore the signal y(k) defined by Eq. (I) satisfies 
the relation 

y(k) = x(k) + e(k) (3) 
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where x(k) is the solution of an n-th order homogeneous difference equation 
with the property 

A(qJ=O, i=1, .. . ,n. 

Combining Eq. (2) and Eq. (3) we get 
n 

y(k) = - L Qix(k - i) + e(k). 
i= 1 

Substituting x(k - i) = y(k - i) - e(k - i) leads to 
n 

y(k) = - L Qi[y(k-i)-e(k-i)]+e(k) 
i= 1 

and thus 
n n 

L Qiy(k-i)= L Qie(k-i) (4) 
i=O i=O 

with Qo = 1. 
Equation (4) is called a special case of an ARM A (auto regressive moving 

average) model, because the AR and MA parameters are the same. The 
determination of the parameters bi and q i in the exogenous process model will 
be performed in two steps. First the coefficients of the ARMA model are 
estimated. Then one determines the zeros of A (z) and thus gets estimates for q l' 
... , qn' The second step is to estimate b l' ... , bn with the knowledge of q l' ... , 
qn' Sometimes the q/s are known and fixed so that their estimation can be 
omitted. 

In the following we will give two examples for processes which can be 
described with an exogenous process model. Let us first consider a process 
which consists of p harmonic components and an additive white noise [1]. 

p 

y(k) = L Yi sin (wikT + <1>J + e(k) , 
i= 1 

E {e(k) e(j)} = u; bkj . 

By use of Euler's formula we get 

y(k) = f Y~ [~(wikT +<Pil - e- j(wikT +<Pil] + e(k) 
i= 1 2} 

and after some algebra 
n 

y(k) = L biq7 + e(k) 
i= 1 



where 
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n=2p 

q _ejwiT q -q* i- , p+i- i 

i=l, ... ,p 

Thus y(k) and e(k) satisfy Eq. (4) with ao= 1 and A(q;)=O, i= 1, ... , n. 
It can be shown [lJ, that 
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<l>ya a; a , (5) 

where <l>y is the Toeplitz autocorrelation matrix of the process y(k) and 

aT=[ao,a 1, ... ,anJ· 

Equation (5) is an eigenproblem in which the coefficient vector a is the 
normalized (ao = 1) eigenvector of<Py belonging to the minimum eigenvalue a; 
[1]. Therefore an estimate for a can be obtained by estimating 4Py and 
determining the eigenvector corresponding to the minimum eigenvalue. 
Computing the zeros of A (z) gives estimates for q 1, ... , qn' 

~G(S)~ 
Fig. 1. Linear system 

Another application of the exogenous process model is to improve the 
dynamic behavior of slow measurement systems. Consider the system shown in 
Fig. 1, where G(s) is the transfer function of a linear, time invariant 
measurement system, u(t) is the input, y(t) the output of the system. If we apply 
the step signal u(t) = Ho a(t) to the system we receive a characteristic transient 
behavior. Fig. 2 shows two typical step responses. For the sake of simplicity we 
have assumed that the system is settled, when the step occurs and 

E= G(O) = 1, 

where E is the sensitivity of the system. 
Examples for measurement systems with relatively long rise times are 

certain types of balances. Here the step signal corresponds to the replacement 
of the mass. In order to improve the dynamical behavior of the system first we 
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must describe the output signal mathematically. The relation between input 
and output is given by the convolution integral 

:t:; 

y( t) = J g( t - r) u( r) d r . 
x 

h(t) 

". L __ _ 
Fig. 2. Typical step responses 

Applying u(t)=uo, t20 leads to 
·X 0 

y(t) = Uo J g(t - r) dr + J g(t - r) u(r) dr . (6) 
o :t:; 

The first term is the step response of the system, the second term depends on the 
behavior of u(t) in the past and cannot be ignored in general. In the case of a 
rational transfer function we have 

m 

L bis
i 

G(s) = _i=_O_ 
. n 

L ais
i 

i=O 

m 

b O(s-/3;) 
m i=1 

a 11 

n 0 (S-Cf.i) 
i= 1 

where Cf. 1, .•• ,Cf.n are the poles and /31' ... , /3n the zeros of G(s). Under the 
assumption that the poles are different and m < n we can perform partial 
fraction expansion which leads to 

n Ki 
G(s)= L 

i=1 S-Cf. i 
(7) 

Taking into account that E = G(O) = 1 we have 

n K. 
L '=-1. 

i = 1 Cf. i 

(8) 
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Inverse Laplace-transform of Eq. (7) yields 

" g(t)= L Ki e"i! . 
i= I 

Inserting this into Eq. (6) and integrating leads to 

( ) f 2! K [L uoJ f K i 
Y t = if-I e' i i+ (Xi -uo if-I --;; 

where 
o 

Li= S e-"itu(r)dr. 

Using Eq. (8) and the abbreviations 

bo=uo 

bi K{Li+ :~J i=l, ... ,n 

we have 

" y(t)=bo+ L bi e2i
!. 

i=! 

Equidistant sampling leads to 

where T is the sample rate. 
Denoting q i = e2i T we have 

and with qo = 1 

for k~O. 

" y(k)=bo+ L bi e
2ikT 

i= ! 

11 

y(k)=bo+ I bi qf 
i= ! 

11 

y(k)= I bi q? 
i=O 
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In practice we usually have to deal with measurement errors and we write 

11 

y(k) = I bi qf + e(k) (9) 
i=O 

which of course is an exogenous process model. 
In order to make the system faster we can try to get an estimate for bo as 

soon as possible. To do so we need to know q!, ... , q" (see next section). 
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Because y(k) is not stationary as in the case of harmonic components, the 
procedure described there cannot be used. Other methods have been es
tablished which can be used to estimate the coefficients of the corresponding 
difference equation [2]. 

Least Squares Estimation Procedure 

Now we want to estimate the parameters b1, ..• , bn in the exogenous 
process model 

n 

y(k) = I bi CJ7 + e(k) 
i= 1 

where we assume that CJ l' ... , qn are real and known exactly. First we make N 
measurements y(O), ... , y(N -1) which can be written in matrix form 

y(O) b1 e(O) 

qn 

+ 
y(N -1) q~-1 bn e(N -1) 

or with the above abbreviations 

y=Xb+e. (l0) 

Often it is advantageous to write X in the partitioned form 

where 
T [1 N- 1J qi = ,qi'·· ·,qi , i= 1 ... n. 

The least squares estimate for b is given by 

b=[XTXJ 1 XTy. 

Because of CJi #- CJj' i #- j, the columns of X are linear independent. Thus X has 
maximum rank and therefore [XTXJ 1 always exists. If we use the 
abbreviation 

we get for the estimator 

b=Dy. (11 ) 
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From the definition of D easily follows 

DX=I. 
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(12) 

The least squares estimator has some properties which we will summarize in 
the following (see for example [3J). 
- The LS-estimator is a linear estimator. This follows at once from Eq. (11). 
- Because ofEq. (12) the LS-estimator is unbiased under the condition E{e} 

=0, i.e. 

E{b}=b. 

This follows easily from Eq. (11). Taking expectations we have 

E{b} =D E{y} 

Using Eq. (10), (12) and E{e} =0 we get the desired result. 
- Under the condition, that e(k) is discrete white noise, i.e. 

E {e(i) e(k)} = 0"; 6;k , 

the LS-estimator is the best linear estimator in the sense E {( 6; - b;)2} = min., 
i= 1, ... , n. 

- The LS-estimator is the best estimator as such in the sense E {(6; - by} 
=min., i=l, ... , n, if the errors e(k) are jointly gaussian distributed. 

- If the errors e(k) form discrete white noise we get for the estimators' 
co variance matrix 

( 13) 

In order to get some further insight into the working of the LS-estimator in our 
special case we write Eq. (11) row by row 

- T . bi=d; y, /= 1, .. . ,n 
where 

is the i-th row of D. 
Executing the matrix operation yields 

N 1 

6;= I d;k y(k). 
k=O 

Defining 
h(N -1 - k) =d;k 

we have 
iV-I 

6;= I h(N-l-k)y(k), 
k=O 
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and thus N-i 
6i = I 1i(k) y(N -l-k). 

k=O 

Therefore 6i can be considered as the output of a digital filter with impulse 
response 1i(k) at time instant N - 1. The z-transform of the impulse response 
1i(k) is given by 

N-i 
Fi(z)= I 1i(k) Z-k. 

k=O 

Fi(Z) is called a FIR (Finite Impulse Response) filter because its impulse 
response is of finite length. Fi(Z) shows the property 

1 , 
Fi(qj)= qf-l 6ij i,j = 1, ... , n . (14) 

Proof By partitioning D and X in rows and columns respectively we get from 
Eq. (12): 

i,j= 1, .. " n 

or in an explicit form 
N-I 
~ d -k .;; L... ikqj =Uij. 

k=O 

Using 1i(N -l-k)=d ik leads to 

and after some algebra 

With the definition of Fi(z) Eq. (14) follows immediately. 
Fi(z) can be written in the form 

N I N-I 

N-I 2:>1i(k)ZN-I-k 1i(O)I1(z-zd 
Fi(Z) = . I h(k)? k = _k·=_O_~:------_ = k~~1 I 

k"=O ., 

where the N - 1 zeros of Fi(z) are denoted with z I' , •. , ZN - l' 

From Eq. (14) we have 
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Therefore 1;(0) is defined uniquely by the zeros of Fi(Z) 

1 
I; (0) = "N -;1,.-------n (qi-zd 

k=1 
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Another conclusion from Eq. (14) is that qj,j = 1, ... , n,j =1= i, are zeros of Fi(Z), 
This leads to 

.t;(0) n N-l 

Fi(z) = NI n (Z-qk) n (z-zd· 
z k=1 k=n 

k*i 
Summarizing the above-said up to this point we see that the filter Fi(z) is 
determined, with exception of N - n zeros, exclusively through the property of 
unbiasedness of the LS-estimator. Because of the uniqueness of the estimator 
the remaining zeros must result from the demand 'least squares'. 

Numerical examples showed that these zeros are arranged in a 
characteristic manner in the z-plane. In the case qi = 1 it was found that all 
remaining zeros are on the unit circle [4J. That this is actually true could be 
proved mathematically by the author. The proof is rather lengthy and therefore 
will be omitted here. Further it can be shown that all remaining zeros are 
outside the unit circle if 0 < qj < 1 or inside the unit circle if qj > I. 

Another property of the estimator may be derived from the definition 

D=[XTXr l XT. 

Ifwe denote [XTXJ 1= [:XijJ and make use ofthe partitioned forms ofD and X 
we get 

Therefore 

or with I;(N -I-k)=d ik 

f· (k) N - 1 - k + N - 1 - k 
. i • = (ij 1 q 1 + . .. It.in q"n . 

U sing the abbreviation aij = ri.ij qJ 1 we get the remarkable result 

(15) 

The n coefficients aij,j = 1, ... , n, can be determined in the above manner from 
[XTXr 1 or they follow from Eq. (14). Taking z-transform of Eq. (15) and 
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making use of the geometrical summation formula we obtain 

n l-(q.z)-N 
Fi(z) = I Qij 1 (J _) 1· 

J= 1 - qjL. 

Thus we can decompose the nonrecursive filter Fi(z) into n recursive filters. This 
is a very interesting fact especially under the aspect of an economical 
realization of the filter. 

As shown above, the estimate 6i can be considered as the output of a 
digital filter at time instant N - 1. If we observe the output of this filter all the 
time and denote this signal with xi(k) we have 

N 1 

Xi(k) = L };(j) y(k - j) . 
j=O 

11 

Inserting y(k - j) = L b1q? - j + e(k - j) yields 
1= 1 

n N-1 N-l 

xi(k) = L blq~ L };(j) ql- j + L };(j) e(k - j), k ~ N -1 , 
1= 1 j=O j=O 

which can be written as 

n N-l 

x;(k)= L b1q7 Fi(ql)+ L };(j)e(k-j) 
1=1 j=O 

using the definition of Fi(Z). 
With the help of Eq. (14) we have the result 

N 1 

x i (k)=b i q?-N+l+ L };(j)e(k-j). 
j=O 

Taking expectations yields 

(16) 

From Eq. (16) we see that xi(k) gives an unbiased estimate for bi at time instant 
N - 1. In the special case qi = 1, bi is estimated unbiased over all time. 

Example 

To illustrate the above-mentioned properties of the estimation procedure 
we will discuss a simple example. Let us consider a first order linear time 
invariant system with time constant T". If the input signal is u(t)=uo, t2::0, we 
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can write for the sampled output signal (see Eq. (9)) 

y(k)= ho + hI qk + e(k) 
where 

ho=uo 

hI: dependent on u(t), t < 0 

For the sake of simplicity we assume that e(k) is discrete white noise, i.e. 

E {e(i) e(k)} = u; (jik . 
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Now we want to estimate the coefficients ho, hI of the exogenous process model. 
The impulse responses of the estimators for ho and hI are 

I (k)= __ ~_~ {_I +_q_S _qS I -k} 
o N 1 + l+q 

I+q l-q 

.f~ (k) = ___ ~:o--I __ -;-;-~ {_I ___ q_S _ N q!\' 
1- I-q 

N ---'--co-

k=O, .... N-l 

which corresponds to Eq. (15). If we define the measuring time T,H = (N - 1 
we have 

I 

q=e ,Xl 

Therefore the estimators depend but on the relation T,H/~ and the filter order 
N. For filter order N = 10 and T,H/~ = 1. i.e. q = 0.895, the impulse responses are 
plotted in Fig. 3 and Fig. 4. 

The associate amplitude responses are shown in Fig. 5 and Fig. 6. 
Because of the fact that the frequency response is the z-transform on 

unit circle we deduce from Fig. 5 that F o(z) has exactly 8 zeros on the unit circle. 
This is actually true as we see from Fig. 7 where the exact positions of the zeros 
in the z-plane are plotted. We recognize that the 9-th zero of Fo(z) is q=0.895 
which is also in accordance with the properties mentioned in the preceding 
section. Considering the zeros of F I (z) we recognize from Fig. 8 first that F 1 (z) 
has the real zero z = 1 as expected. The remaining 8 zeros are obviously slightly 
outside the unit circle which is due to the fact that q < 1. 

3 Periodica Polytechnica El. 28/2-3 
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T 

• 1 -10 k 

Fig. 3. Impulse response of the estimator for bo 

0.89 

i -10 k 1 1 

Fig. 4. Impulse response of the estimator for b l 

So far we didn't consider the quality of the estimation. If we evaluate the 
covariance matrix Vb (see Eq. (13») in the special case of our example we get 
relations for the standard deviations of 60 and 61 in dependence of the relation 
TM/'Fs and filter order N. In Fig. 9 these functions are plotted for the cases N 
=10 and N=lOO. 
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ws/Z -Ws W 

Fig. 5. Amplitude response IFo(w)l. ws= 2n: sample frequency 
T 

IF, (w)1 i 
3.74 

c..:Js/Z 

Fig. 6. Amplitude response IF l(w)1 

-Ws W 
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We see that the reduction of the error improves with increasing 
measuring time and filter order, respectively. For the above values 

(~ = 1, N = 10 ) we get 

(17) 

Often we are only interested in 60 , As we see from Eq. (17) the error is about the 
same if we wait until the system is settled or if we estimate with measuring time 
T M = T. and filter order N = 10. Figure 10 shows the original step response of 
the system and the corresponding estimation signal where the estimator works 
all the time. For simplicity disturbances are neglected. Obviously the 
estimation procedure improves the dynamics of the system. 

3* 
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Im z 

z- plane 

---+------------~~---------/o Rez 
0.895 

Fig. 7. Zero-plot of F o(z) 

Im z 

z - plane 

o o 

Fig. 8. Zero-plot of F 1 (z) 
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\ 
2 \ 

\ , , 
" ' ... ...... 

... _--
N;lO 

~------~-------+2-----'TM 

Ts"" 

Fiy. 9. Standard deviations of 60 and hi (-- -) 

h(t) , xo(k) 

t 

~ L-________ ~--------_+----------~\ ~ t 

2 3 Ts 

Fig. 10. Step response h(t) (---) and estimation signal xo(k) (-e-e) 
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