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Summary 

The quality of autoregressive estimators can be judged by statistical criteria like the bias 
and the variance of the estimated parameters. But generally, analytical expressions for these 
criteria exist only in the asymptotic case of great samples. This paper presents a class of 
nonrecursive autoregressive estimators which contains most of the usually used autoregressive 
estimators, especially the Orthogonal Regression. A statisticallinearization of this class leads to 
approximations for the quality criteria. They are valid for every sample size, but only for small 
disturbances. Further, there are hints about a good estimation depending on the effective 
sampling time in the autoregressive equation. 

Introduction and Overview 

Many parameter estimation methods for autoregressive models are in use 
which produce satisfactory results (e.g. Graupe et al., 1980; Haykin, 1979). The 
following reasons are noteworthy for this contribution. 

If we will prove or compare the quality of the various methods for 
example by means of the bias and the variance of the estimated parameters, in 
general, we find no analytical expressions for them. However, the asymptotic 
behaviour is known for great samples. For medium and small samples we have 
to do long and tedious test series. 

Further, the criteria show interesting dependences from free parameters, 
e.g. the effective sampling time in the auto regressive equation. It would be of 
great advantage to use this dependence for improving the estimators. But by 
trial and error the variation of the parameters is a matter of experience and of 
good luck. 

Therefore, analytical expressions for the quality criteria are desirable. 
They can give insight into the proceedings and characteristics ofthe estimators. 
Now it would be possible to improve the estimators by a systematic choice of 
the free parameters. 
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The starting point of our approach is the description of a measured signal 
by a special exogenous model permitting both stationary and nonstationary 
processes. After the introduction of discrete time the auto regressive model will 
be derived from the exogenous one by a linear transformation and a constraint. 
The auto regressive model obtained by this way can be compared with the 
solution of a homogeneous linear difference equation having constant 
coefficients. 

These coefficients may be estimated by many methods. From a general 
description of the estimation problem it results in a class of nonlinear 
nonrecursive autoregressive estimators. It comprises most of the usually used 
methods, especially the Orthogonal Regression. 

The bias and the variance are employed as quality criteria for the 
estimated parameters. We have to deal with the expectation operator, therefore 
linearization seems to be the only reasonable way to master the nonlinear 
problem. It appears as a small signal approximation relative to the noise for the 
quality criteria. We obtain simple expressions in the case of Gaussian white 
noise. For further simplification the covariance matrix of the estimated 
parameter vector needs the additional assumption of noncorrelated measure
ment values in the measurement matrix Y. In the last section, the validity of the 
approximations is shown by an example which is compared to the statistics of a 
computer-simulated test series. 

Parametric Model§ for Signals 

Basically, the problem is assumed to have a series of samples and the task 
is to analyse the signal which caused the record. 

The exogenous model 

As a first step we fit for the continuous time t a mathematical parametric model 
.v(t) on the output signal y(t) of a process. The process may b-e disturbed by an 
additive measurement noise L1y(t). This arrangement is termed a feed forward 
or output error model (Fig. 1). 

It can be written 

y(t) = J!(t) + e(t) (2.1) 

wherein e(t) is the equation error and contains both model and measurement 
errors. However, only errors due to measurement are taken into consIderation, 
because the model error cannot be treated in a unified and systematic way. 
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As a special exogenous model we use 
p 
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y(t)= L r j · exp (sjt). (2.2) 
j= 1 

A general exogenous model represents a signal by a weighted sum of functions 
or elements of a function system. The orthogonal system of the complex 
exponential functions is chosen, because of the advantages: 

u(t) }----.--_ y (t) 

e (t) 

Fig. 1. Feed forward or output error model 

a) the physical meaning of its parameters: 

rj as a complex amplitude: 
Sj as a complex frequency. 

b) it can be interpreted as the solution of an inhomogeneous differential 
equation. This equation describes a linear, time invariant or 
quasistationary system with lumped parameters excited by an input 
signal. Because we do not allow model errors and we have a linear 
system the input signal must be composed like Eq. (2.2). Quasistation
ary means that the parameters rj and Sj should be constant during the 
time of one measurement series. 

Interpreting the exogenous model as a solution of an inhomogeneous 
differential equation having a transient term and a steady-state term, the model 
can be conveniently used for both stationary and nonstationary signals. 

The structural parameter p which is termed the model signal order is 
assumed to be a known parameter. The frequencies Sj contain the character
istic frequencies of the signal composed by the characteristic frequencies of the 
system, as well as the input signal. For their appearing in the output signal it is 
necessary that the system frequencies are excited by the input signal and the 
input frequencies are transferred by the system. We assume that all complex 
frequencies Sj are simple and different for identification. 

Working with the computer we consider the discrete time and sample the 
signal y(t) at a distance Ll 

p 

y(t=iLl)=y(i)= L rjexp(s)Ll)+eU) (2.3) 
j= 1 

for i=O, 1, ... , NM-l, where NM is the number of the samples. 
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In the comfortable matrix representation we get for all sampling instants 

y=Xb+e 

with the following components: 

(Y)i= y(i) 

(X)ij = exp (s i,j) = qj 

(b)j= rj 

(e)i=e(i) 

for i = 0, 1, ... , N M-I and j = 1, 2, ... p. 

(2.4) 

(2.Sa) 

(2.Sb) 

(2.Sc) 

(2.Sd) 

If all Sj are different with respect to each other, the matrix X possesses the full 
rank p, its columns span a p-dim. vector space. - As a vector space we suppose 
a Hilbert space with complex or real elements. 

For analyzing the signal y(i) we have the problem of determining the 
coupled set of the 2p parameters: rj and Sj' The normally used least-squares 
criterion produces 2p nonlinear and transcendental equations which can not be 
solved analytically. 

The autoregressive model 

To overcome the problem due to the coupled parameters we apply a linear 
transformation subject to a constraint on our special exogenous model and 
find 

Ay=Ae=E (2.6) 

with the constraint 
AX=O. (2.7) 

By this way the parameters rj are eliminated, the constraint decouples the 
parameter set. The constraint plays the important role of a connection between 
the auto regressive and the exogenous signal representation. Every row in the 
equation system (2.6) shows a stochastic difference equation or an autore
gressive equation of unknown order for the erroneous measured values y(i). 

If we agree upon an equal distance ,jeff between the values y(i) in the 
equations we can write with 0 as a sampling factor and ,j as the original 
sampling time 

(2.8) 

Therefore, any row of the system (2.6) represents the identical difference 
equation but for other, say another following time instants. 
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To determine the necessary order ofthe autoregressive model we examine 
one entry of the matrix constraint. It results in a polynomial with the 
coefficients ad<5) and p different roots 

q1=exp(sj'1<5). (2.9) 

The polynomial is independent oftime and because of the p roots we choose the 
order as to be p: p 

L ak(<5)q1'k=0, (2.10) 
k=O 

which is the characteristic equation. Further, we find a difference equation of 
order p p 

L ak(<5)y(i+k<5)=s(i) (2.11) 
k=O 

for i=O, 1, ... N -1. N means the number of the possible difference equa
tions and is given by 

(2.12) 

In the undisturbed case we have a homogeneous difference equation for the 
values y(i + k<5). 

From another point of view we can interpret our proceeding up to here as 
tracing back to the solution of a difference equation. Our starting point has 
been the solution itself or the exogenous model. Its terms are caused by the 
exponential solution set-up and the roots of the resulting characteristic 
equation. The characteristic equation corresponds to the constraint and 
because we wish a homogeneous difference equation - possessing only 
information about the output values - we choose a homogeneous constraint. 

It is naturally possible to derive the autoregressive model by means of 
system theory, especially the Z-transform (Stockle, 1984). 

The demonstrated way is preferred because of the relative simple 
connection of the parameters in our case, and of the explicit dependence from 
the effective sampling time. 

In summary, we can identify the exogenous model by the following steps: 
a) From the autoregressive equation system (2.6) we compute the coefficients 

ak (<5)· 
b) We set up a polynomial with these coefficients (2.10), the roots of it (2.9) imply 

the frequencies Sj. 

c) In the last step we determine the weighting coefficients rj e.g. by the well-
known methods of the regression theory. 

With a little knowledge about the input signal, for example its shape, or 
about the system, it is often possible to divide the identified frequencies Si of the 
output signal in a part belonging to the input signal and a part belonging to the 
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system. In this case we can attain a complete parameter identification of the 
input signal as well as of the system. 

Now we direct our attention to the computation of the coefficients of the 
autoregressive equation. 

A Class of Nonrecursive Autoregressive Estimators 

The general autoreyressive estimator 

Because the measurement values y(i) are erroneous we need an 
overdetermined equation system for a good estimation of the parameters adb). 
If we collect them in a vector a and the values y(i) in a matrix Y with 

(Y)ik = y(i + kb) , 

the equation (2.6) can be modified as 

Ya=E. 

(3.1 ) 

(3.2) 

Using the least-squares criterion we have to minimize the normalized error 
function 

1 T T yTy T 
F(a)=-E E=a --a=a Ma. 

N N 
(3.3) 

The matrix M can be called an empirical correlation matrix because its 
elements are defined as 

1 N 1 

= L y(i + kb) . y(i + [b). 
N i=O 

(3.4) 

The error function is homogeneous and we receive the minimum at the trivial 
solution a = O. Preventing that we have to introduce a normalization for a. 
which may lead to many solutions but not all of them are good. 

A general normalization (Kronmilller, 1978) can be formulated as a linear 
constraint on a 

(3.5) 

where g is provisionally a general weighting vector for the coefficients ak , and 
assumed to have a suitable length of unity. 

This statement comprises most of the generally used normalizations. 
They can be treated all at once in this way, the symmetry of the minimum 
problem (3.3) is preserved and it is possible to find an optimal weighting vector. 
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We have to minimize now an expanded errorfunction which pays regard 
to the constraint 

LG(a, i.)=F(a)-2i.(aTg-l)=a™a-2i.(aTg-l) (3.6) 
and we find 

(3.7) 

Using the constraint (3.5) we get 

~ 1 T 
1.= -gT=M----:-1-g =a Ma=F(a). (3.8) 

We see that the Lagrangian multiplier;' has a clear meaning. it is the minimized 
error sum which depends on the choice of the weighting vector. 

From equation (3.8) we obtain 

A ""M - 1 1 1 Mad g a = 1.1 g = 1 M g = T • 
gTM g {J M .{J 

6 " aQ19 

(3.9) 

the last reformulation with the adjugate matrix Mad resulting from 

-1 1 .. M = Md det M a 
(3.10) 

is useful if the matrix M becomes singular. 

The optimum weighting rector g: the Orthogonal Regression 

The formula (3.8) for the minimized error function shows a dependence 
from the weighting vector. We find the absolute minimum of the criterion with 
the help of the Rayleigh-coefficient well known in linear algebra (Strang, 1980). 
The optimum weighing vector gapt has to be 

g -J opt -'0 (3.11 ) 

that means the normalized characteristic vector belonging to the smallest 
characteristic value of the matrix M. If we substitute this optimum vector into 
the estimator (3.9) it turns out that 

(3.12) 

Therefore the constraint preventing the trivial solution reduces to a simple 
normalization rule. 

This optimum estimation method is known as Orthogonal Regression or 
Eigenvector method. It can be found in the literature e.g. (Koopmans, 1936; 
Levin, 1964; Kronmi.iller. 1978). 
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Some geometrical considerations 

For enlightening our subject from another point of view, we start some 
geometrical considerations. 
In the undisturbed case the system of equations (3.2) becomes 

Ya=O (3.13) 

and contains N error-free difference equations according to (2.11): 

(3.14) 

In the (p + 1 )-dim. Hilbert space every row vector y z(i) of the matrix Y is 
orthogonal to the coefficient vector a. The row vectors span a p-dim. subspace 
R(Y) - the row space of the matrix Y - and the vector a is the associated normal 
vector in this case (see Fig. 2) which is termed as the exact coefficient vector a. 

o~--... 
d(i)-t~~hJ ~(.!L_J 

o 
A 

Fig. 2. The subspace R(Y ) 
and its normal vector a 

Fig. 3. The distance d(i) of the vector y=(i) 
from the hyperplane A 

The rule (3.3) for computing the matrix M = ~ yTy indicates that the 

rows and columns of M are linear combinations of the rows ofY, therefore the 
row- and the column-space of M are identical with R(Y). 

In the case of disturbed values y(i) we deal with the equation system (3.2) 
which contains N inner products. We can express them as 

aT yz(i) = I all yz(i)1 cos (a, yz(i)) = I a I d(i) = 8(i), (3.15) 

where d(i) can be interpreted as the distance of the tip of the vector y z(i) from a 
hyperplane A characterized by the normal vector a (Fig. 3). 

Considering the constraint (3.5) we get for the length of a a term (Fig. 4) 
which is useful for the equation error 

e(i) = d(i) 
Icos (a, g)1 

(3.16) 
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Fig. 4. The length of the coefficient vector a constrained by a 1 g = I 

The results yield that every equation error depends on the angle between the 
coefficient vector a and the weighting vector g. If the vectors are parallel the 
absolute minimum is reached. In this case the direction of a is derived by 
minimizing the sum of the squared orthogonal distances d(i) of the vectors YAi) 
from the hyperplane A or regression plane: "Orthogonal Regression". 

Quality Criteria for the Estimated Parameter Vector it 

The definition of the bias and the variance 

The derivation of the class of nonrecursive autoregressive estimators has 
taken place without any statistical means. As quality criteria we choose the bias 
and the variance usually used in statistics. With E { ... } as expectation 
operator and splitting up the estimated vector it into the exact part a and an 
error part Aa 

(4.1 ) 
we can define the bias 

E { Aa } = E {a - a} (4.2) 

and the covariance matrix of the estimation error 

V ~= E {(a - E {a}) (a - E {a}f}. (4.3) 

The bias is the difference between the mean of the estimated and the exact 
vector, if we can repeat the estimation several times under the same 
circumstances. 
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The variance of the estimated parameters ai is given by the diagonal 
entries of the matrix V;, and they contain a hint about the scattering or 
dispersion of the estimated values about their means. 

Because of the statistical criteria the measurement values y(i) are treated 
as random variables. We assign the statistical properties of Gaussian white 
noise to the measurement errors Lly(i): 

(4.4) 

The approximation for the bias of a 

For the computation of the criteria we have to operate with the 
expectation on the vector a and the product aa T. Because the estimator (3.9) is 
nonlinear in a complicated way, we are forced to linearize. Every term is 
developed into a Taylor series about its exact value and the quadratic and 
higher order terms are neglected. Accordingly the small signal approximations 
are obtained as, e.g. 

g~g+Ag 

M~M+AM. 

Computations in linear algebra give the desired result, as, 

(4.5) 

(4.6) 

(4.7) 

where io denotes the normalized eigenvector belonging 
eigenvalue of the matrix 1\1, 

to the smallest 

lOT 
P i og· h .. = 1 - ~ lS t e prOjectlOn operator. 

g 0 

o ~ 1 jilT 
M = LTI;I; 

i= 1 I,; 
is the singular value decomposition 
(Strang, 1980; Kuhnert, 1976). 

Also, J; are the eigenvalues of M with 0 < J1 < J2 < ... < Jp, 
1; are the according normalized eigenvectors. 

In the case of the Orthogonal Regression with g=io we attain 

AaOR=Alo~ -M- AMio' 

(4.8) 

(4.9) 

(4.10) 
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Taking expectations produces the bias 

E {Aa} ~(J2IaI2PM -g, 

which vanishes for the Orthogonal Regression 

E{Aaad = E{Alo} ~O. 
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(4.11 ) 

(4.12) 

The results are illustrated in Fig. 5. In general the vectors it and a touch the 
hyperplane G with their tips, the difference vector ila lies entirely in the plane G 

Fig, 5. The expectation of the linearized estimation errors ,1a and ,110 

depending on the direction of the weighting vector g. In the mean the variation 
of a is not identical with it, we have a bias E {Aa} which is always negative: 

(4.13) 

In the case of the Orthogonal Regression the estimated vector fiaR = 10 varies 
with its tip touching L, but in the mean there is no difference between the 
estimated and the exact vector. 

The approximation for the co variance matrix of a 

We can reformulate equation (4.3) for the co variance matrix in terms of 
the difference vector Aa 

v ~= E {(Aa- E {Aa}) (Aa- E {Aa}f}. (4.14) 

If we put in Aa according to (4.7) we find 

V ~~ laI 2PM-pT[E {AMioi&'AM} - E {AMlo}E {i6'AM}JPM -pT. (4.15) 

4 Periodica Polytechnica El. 28/2-3 
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Taking the expectation we attain complicated sums (Pross, 1984), thus in 
general only a numerical treatment is possible. 

But if the limitation for the allowed region ofthe sampling factor b related 
to the effective sampling time in the auto regressive equation is accepted the 
sums simplify drastically. The limitation means to have only noncorrelated 
measurement values in the matrix Y: 

(4.16) 
Thus we get, 

(4.17) 

and in the special case of the Orthogonal Regression 

(J2 0 (J2.f!-, 1 
Vlo:::::: N M-= N·.2.. TUT. ,= 1 ).i 

(4.18) 

The last formula is the lower boundary corresponding to the Cramer-Rao
inequality. The matrix M contains all information we have which is the Fisher 
information matrix (Sorenson, 1980). In this special case the estimation is equal 
to a maximum likelihood estimation, too (Koopmans, 1937). 

The following remarks are worthy according to the co variance matrices, 
a) they are singular, because they describe a singular or defective 

distribution. The components of the (p + 1 )-dim. random variable a are linear 
dependent because of the normalization constraint. 

b) It is difficult to compare matrices, especially singular ones. For that, we 
can define several criteria and one possibility is the average variance of all 
components cl i • In spite of equal length of the normalized parameter vectors we 
find 

(4.19) 

the Orthogonal Regression has in the mean the smaller variance, trM is the 
trace of the matrix M -. 

c) The matrices P and M- consist of normalized vectors, the amounts of 
their components are less or equal one. The amount of I a I can be controlled by 
the direction of the weighing vector g, therefore only N and the second smallest 
eigenvalue Al can have a large influence on the variance of a. We take N as a 
measure for the overdetermination of the equation system and 11 as a measure 
for the further degree of the linear dependence of the singular matrix M. We 
have to consider that the smallest eigenvalue does not appear, it is zero in the 
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undisturbed case or very small representing only the noise of the measurement 
values and has been neglected in the singular value decomposition matrix. 

d) The derived approximations contain only undisturbed and therefore 
unknown quantities. But applying ergodicity (Papoulis, 1965) these unknown 
quantities can be replaced in a good manner by the quantities which are 
computed from the disturbed measurement values. 

An Example 

As an example we deal with a first order system and a unit step as input 
signal. Therefore, we obtain an autoregressive equation of the order two 

ao(b) . y(i) + a 1 (b) . y(i + b) + a2 (b) . y(i + 215) = £(15, i) (5.1) 

and estimate the coefficients by the Orthogonal Regression. Beginning with the 
step we take N M= 100 samples during the measurement time Twhich equals 
the time constant Tofthe system. The samples are simulated with an additive 
white noise, its standard deviation amounts 1 % of the stationary value of the 
output signal. 

For proving the validity of the approximations they are compared with 
the statistics of 50 test series. 

sf 
8 j : : if , 
7 ~ 

I 

61 \ 
5 : 

i 

') \ 
:J \ / 1 
1 ~ ..... -+- .............. +- • .I'f'-.......-. 

I 
• N· AI '"-.. +,o¥ 
~+-+-+ ...... +-++-i'---+- ..... -

. . I I I I I I I I I> 

o 10 20 30 40 ,; 

I 
Fig. 6. The degree of linear dependence -r and the inverse of the degree of the 

)'1 

overdetermination N 

4* 



142 /).PROSS 

6{a;" I -.- % 
0 Q. 

0 I 

i=O 

81 0 • 
e 0 

! 0 

I. 0 
0 r • 

e 
6

1 
T 
! 

4 L. ... ' 0°0 • 

I ,,0 

21 ~oooo 

I 
+ 
, 
0 10 20 30 40 d 

Fig. 7. The normalized standard deviations of the parameters ai' analytical approximation (-) 
and statistics of test series ( ... , x x x, + + + ) 

According to (4.12) the bias of the estimation vanishes, a similar result 
shows the computer simulation for all admissible <:5 values. The variances of the 
estimated parameters are described by the covariance matrix (4.15). In Fig. 6 

the dependence of the important factors NI and ~ from the sampling factor <:5 is 
)'1 

plotted. The number N of equations and therefore, the degree of overdeter
mination of the equation system decreases with increasing cS. The degree of 

linear dependence given by ~ shows a relatively broad minimum. In Fig. 7 the 
)'1 

normalized standard deviations of the parameters Qi can be compared. The 
approximations are in good agreement with the test series. For the 
un correlated domain (33 ~ cS ~ 48) the approximations are computed by Eq. 
(4.18). We can see that very small and great values for the effective sampling 
time <:5 • 11 in the autoregressive equation should be avoided. In this case a 
sampling factor cS around 5 ... 15 is preferable. 
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