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Summary 

Five methods for time delay estimation are discussed: the Basic Cross Correlation 
method, the Generalized Cross Correlation method, the Average Amount of Mutual 
Information, the Maximum Entropy of the Difference of 2 time series and the Directed 
Transinformation. In case of a priori knowledge, expressions for the maximum likelihood time 
delay estimators are derived. The application of these different methods in physiological 
applications will be discussed. Simulations are provided to illustrate some of the characteristics 
of the proposed methods. 

Introduction 

Brain research has revealed that different cerebral areas work in concert 
to produce a 'single' mental activity. Cerebral systems have been identified that 
support memory functions, while other systems mediate language or 
consciousness, etc. However, usually we do not know how the different 
subsystems cooperate. A relative simple parameter in the interaction process 
between neural areas might prove to be the time delay involved in the 
communication between these subsystems. Knowledge about the time 
relationships may give some insight in the hierarchical organization of major 
brain processes. 

In our clinic, we are particularly interested in the communication process 
between both cerebral hemispheres. It is assumed that this cerebral communi
cation is somehow reflected in the electrical brain signals (EEG). 

Firstly, current models and algorithms will be discussed and secondly, a 
new application of an information theoretic measure is proposed which can be 
used in both stationary processes as well as in transient-like processes, such as 
the event related brain potentials. 
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Cross Correlation Methods 

In many studies on time delay estimation, the model used can be 
presented like in Fig. 1, where s(i) and s(i - D), corrupted with independent 
noise are known: 

Fl 
y(i) = s(i - D) + 1I2(i) 

s, lIt and 1I2 are independent, while lIt and 1I2 are Gaussian processes. Perhaps 
the most commonly used method is the Basic Cross Correlation method (BCC), 

MODEL A 

Fig. 1. Model A is a simple delay system, s is the signal source and T(DJ is a linear transform that 
introduces a delay of D samples. III and 112 are zero-mean normal processes 

or its frequency equivalent, the Coherence Phase Shift method. These methods 
proceed as follows. The estimator fj is that value of D that maximizes the 
expressIOn: 

F2 

where Xm and Ym are the actual (measured) data. 
One may notice that the BCC only depends on knowledge of the cross 

variance Rxy(t) and therefore is an a posteriori estimator. 
An improvement on the BCC can be made by filtering the signal before 

the cross correlator, like shown in Fig. 2. 

-':;'--;,,1>-1\ Hl 
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Fig. 2. Generalized Cross Correlation method 
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This is the so-called Generalized Cross Correlation method (GCC). Knapp and 
Carter [3J derived expressions for HI and H2 that yield a 'heuristic' Maximum 
Likelihood time delay estimator. These expressions are: 

F3 

where: F4 

is the Magnitude Squared Coherence (MSC) and G is the Fouri~r transform of 
the correlation function R. 

Actually, Knapp and Carter [3J did not derive a ML-time-delay 
estimator, because they used estimated spectra as their a priori knowledge, 
estimated from the same data set as in which the time delay had to be estimated. 
This was also recognized by Scarbrough et al. [7]. Their "optimal" ML 
processor used the a priori auto-spectra, and the estimated cross-sp~ctrum. 
Again, also this "optimal" ML-processor is not a ML-estimator. In fact. the 
algorithm is not stable under all circumstances. For instance, if the estimated 
cross spectrum is equal to the square root of the product of the auto-spectra 
then the Magnitude Squared Coherence is equal to 1 and therefore F3 is not 
defined. 

In appendix A expressions are derived for the ML-time-delay estimator 
in case of a priori known noise processes, and in case of a priori known noise 
processes plus signal process. For the second case Which is also the one 
considered by Scarbrough et al. [7J, the ML-estimator uses all 2nd order 
moments, and not as they suggested, only the cross covariances. In appendix B 
it is shown, that BCC is a ML-estimator if the noise processes are known to be 
zero-mean, independent white Gaussian processes. 

The Average Amount of Mutual Information (AAMI) and Maximum 

Entropy of the Difference (MED) 

A method using an information theoretic measure in time delay 
estimation has been described by Mars and Van Arragon [5J. The nonlinear 
model they used is shown in Fig. 3. 

Mars and Van Arragon used the Average Amount of Mutual Informa
tion (AAMI) to estimate the delay D from the measurements x and y. The 
properties of the mutual amount of information have been studied extensively 
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by Gel'fand and Yaglom [1]. Mars and Van Arragon took as J5 that value of D 
which maximizes the expression: 

ff A PXyC"IC,vID) 
AAMlxy(x, yID)= PXy(x, YiD) log A ( ; ( ) dxdy. F5 

Px x) py Y 
Xy 

Because of the nonlinearity, normality of x and y is not assumed. The power 
density functions were estimated using a sophisticated kernel estimator. Only 
stationarity is assumed for signal and noise sources. So the AAMI-estimator is 

MODEL 8 

Fig. 3. Model B is equal to Model A. except for the non-linearity I(s) in the delay line 

an a poslerioriestimator. The division by Px(x) and py(y) in F5 is merely a 
matter of normalization. In appendix e it will be derived that in case if x and y 
are normal processes, the AAMI method proves to be equal to the Bee. 

Now we have seen 2 a posteriori estimators, Bee and AAMI, that 
actually depend on 2 variables: xy or p(x, y). However, as we might guess from 
appendix A, an improvement can possibly be made by using also xx and yy or 
p(x, yD), where x and yD are vectors of random variables presenting the process 
and D denotes a shifted version of the process. A suitable measure is the 
Maximum Entropy of the Difference (MED) between series x and series y. 
If ZD = X - yD then: 

"'" M ED(D) = - J fJ(ZD) log fJ(ZD) . F6 

If n 1 and n2 are independent Gaussian processes then: 

exp [- ~ (zDf RD 1 (zD)] 
A D -
P(6 ) = 1 F7 

(2nt/2 IRD II 

where n is the dimension of ZD and R D = Rx yD. 
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Substituting F7 in F6: 
MED(D)~ -log (IRDi). F8 

Now take as fj that value of D, that maximizes (det (RD)) I. Rewriting det (RD): 

F9 

This expression shows that all elements of the estimated covariance matrices 
are being used. It should be noted that we did not require s to be a Gaussian 
process. Furthermore, MED(D) averages over all possible realisations of the 
processes x and y. If a priori information is provided, a p. d. f.-estimator must be 
invoked that takes this knowledge into account [8]. If the delayed signal is 
somehow attenuated, then ZD must be changed into ZD* = A . x - yD, while the 
maximization problem has become one with 2 variables D and A. 

The physiological model 

Basically we have introduced 2 models, firstly a delay system without 
signal distortion, secondly, a delay system with signal distortion. In case of the 
first type of model, ML estimators have been derived, though they are usually 
only of theoretical interest (because usually we do not have relevant a priori 
information). 

In the sequel, I will disregard the frequency domain approaches. 
Although they may offer calculational advantages, they are hampered by the 
fact that delays are always restricted to + 180 and - 180 degrees phase shifts 
and they offer no conceptual advantages in the case of time delay estimation. 

Now, before considering the presented estimators in more details, let us 
examine the model which we want to use in solving the delay estimation 
problem in neural tissues. I think that we do not have sufficient physiological 
support for either model A or model B. Reality deviates from these models in a 
number of aspects. 
1. Different nerves conduct the electrical nerve pulses at different velocities. 

Because of these different velocities, the signal will be distorted at micro level 
and therefore perhaps also at the macro level. Here, micro level refers to 
measurements in single cells and nerves, where macro level refers to 
measurement of relative large populations of cells. 

2. Often communication channels between different brain areas are bidirec
tional. Feedback loops are always possible. 

3. Gaussian distributions are usually postulated but rarely justified. Deviations 
from normality in the measured process should be taken into account. The 
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algorithms that are based on models that implicate normality, must be 
'sufficiently' insensitive to the actual deviations from these assumptions. 

4. It is possible that coding and decoding devices are part of the communica
tion system. Little is known about the characteristics of these devices. 
Nonlinearities, as well as memory are likely to be present. 

5. In many physiological recordings, the instrument noise is small compared to 
unwantedly recorded physiological background signals. There is no ground 
for the assumption that these background signals, recorded at different 
electrode locations, are independent, neither will they be independent of the 
signal we are actually concerned with. 

6. During the generation of, for instance evoked potentials, special neural 
pathways may be involved. Therefore, the channel properties may depend 
on the delay of time since the stimulus onset. 

It will be clear from this summary of necessary model properties that both 
models that have been discussed might give rise to poor results. Therefore, we 
present a model for which information theoretic measures have been proposed 
by Marko (1973). We believe that this model of bidirectional communication is 
well suited for the problem measuring exchange processes between cerebral 
areas. 

Directed transinformation 

The bidirectional communication model presented by Marko (1973), is 
shown in Fig. 4. -;".h 

Marko derived expressions for the Directed Trans-Information (DTI) 
from AI to A2 and vice versa. The DTI measure designates the reduction of the 
entropy in for instance x because of knowledge of past events in y. The sum of 
these measures in both directions is equal to the mutual information. 
Harashima has worked out the ideas of Marko interpreting x and y as time 

MODEL C 

Fig. 4. Bidirectional communication between A I and A 2 • S I and S 2 are signal sources; 11 I and 112 

are noise processes, independent of SI and S2' Cl' Cl' DI and D2 are coding resp. decoding 
devices 
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series, resulting in an expression for conditional mutual information (6, 9). This 
conditional mutual information expresses the statistical influence of variable x 
at time k on variable Y at time k + m. In case x and Y are multivariate random 
vectors, this statistical influence can be written as (6): 

where 

X=(Xo,·· "Xk'" "Xk+m'" .)=XNXb ·· ',Xk+m'··· 

Y=(Yo,· "'Yk'" ·,Yk+m," .)=yNYb ""Yk+m, ... 

and R(.) is the covariance matrix. 

This measure of uncertainty decrease of yk + m because of xk has been 
applied in biological signals (Inouye et aI., 1981, Saito, 1981). For calculational 
conveniency (numerical stability?), this DTI measure was expressed in ARMA
model coefficients. In this study we like to stay with FIO, because this formule 
offers some practical and conceptual advantages. First of all, the 'heuristic' 
identification of the order of the ARMA-model is avoided. Secondly, the 
covariance matrices can also be estimated for evoked potentials. In this case x 
and Y are vectors which elements have a fixed relationship to the stimulus 
onset. The covariance matrix Rxy can be estimated from N realizations xj and yj 
(j= 1, N): 

FII 
,) - f),j ,J I,j) 
.J -·l "1' ... , J s' ... , ,," n J 

Sample s corresponds to the stimulus onset. 

~ .. I(Nokok) Rxx(z,})= N I ;Xmi X mj 
k = 1 

1 ( N ) ~ •. k k 
Ryy(z,})= ]\T I YmiYmj 

k= 1 
FI2 
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How well does the Marko-model reflects the biological reality? The model does 
not assume the presence of a single delay, multiple delays are included, though 
strictly, the model does not assume anything on delays. Because of possible 
coding and decoding devices, memory and nonstationary transfer functions, 
delays and impulse responses may not at all describe reality sufficiently. 
Though DTI measures the influence of process x at time k on process y at time 
k + rn, rn is not necessarily a physical delay. The mutual information measures 
do not indicate the anatomy of the substrate. However, because of additional 
knowledge about connections between certain cerebral areas etc., we are 
allowed to see rn as a delay factor. We should like to stress that this 
interpretation is by no means 'logical'. 

Simulations 

Simulations are done to illustrate the time delay estimation methods that 
have been discussed. ML-estimators are not included because a priori 
knowledge is usually not available in physiological experiments. The BCC
algorithm, the TDI-algorithm and the MED-algorithm were fed with data 
generated by the model that is presented in Fig. 5. Moving Average filters with 
white Gaussian input are used to generate the time series. Results were 

Fig. 5. Simulation model for generating delayed time series corrupted with (in)dependent noise 

obtained using different signal to noise ratios. Firstly, FILTER 2 in the model 
was set to zero and the attenuation factor A was set to 1.0. 
The actual model-parameters were: 

o db: FILTER 1 = (0.8, 0.6) 
FILTER 2 = (0.0) 
FILTER 3 = (0.8, 0.6) 
FILTER 4=(0.7, 0.5, 0.4, 0.3) 
A=1.0 
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- 6 dB: FILTER 1 = (1.6, 1.2) 
FILTER 2 = (0.0) 
FILTER 3=(1.6,1.2) 
FILTER 4=(0.7,0.5,0.4,0.3) 
A= 1.0 
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Figure 6 shows the resulting curves of the different algorithms. One sees that 
BCC depends on the correlation function of s (broad peaks). DTI shows 
sharper peaks and M ED yields very sharp peaks. M ED does not depend on the 
correlation function of s, while the entropy drops very rapidly if delay D is not 
equal to the real delay. 

In the second set of simulations, the situation is less ideal. FILTER 2 is 
not equal to 0.0 and A =0.5. In this case we do not have uncorrelated noise 
while the delayed signal is attenuated. Algorithm MED has been adjusted to 
estimate the attenuation factor from the data. It actually maximizes the 
entropy of R 4x _ yD (though this adjustment had little influence on the 
performance of the estimator). 
The actual sets of model-parameters were: 

o dB: FILTER 1 = (0.57, 0.42) 
FILTER 2=(0.57,0.42) 
FILTER 3 =(0.57,0.42) 
FILTER 4=(0.7, 0.5, 0.4, 0.3) 
A=0.5 

-6 dB: FILTER 1=(1.6, 1.2) 
FI L TER 2 = (0.0) 
FILTER 3 = (1.6, 1.2) 
FILTER 4=(0.7, 0.5, 0.4, 0.3) 
A=0.5 

Figure 7 shows the results of the different algorithms. Especially BBC and 
MED are sensitive to the correlated noise environment. DTI is not much 
affected by the presence of this noise. 

Conclusion 

The best time delay estimators are only best for the model to which they 
apply. If reality deviates from the chosen model, then the performance of the 
time delay estimator can deteriorate very rapidly. We have seen that especially 
uncorrelated noise in a case where correlated noise was expected, can be very 
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Fiy. 6. Simulation results of MED, DTI and BCe. The noise processes are uncorrelated. The 
attenuation factor is A = 1.0 
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Fiy. 7. Simulation results of MED, DTI and BCe. The noise processes are correlated and the 
attenuation factor A = 0.5 
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hazardous. In the case of a priori known spectra, M L-estimators are probably 
the best. But one should have very good reasons to believe that the a priori 
spectra indeed apply to his particular data set. If one does not have any prior 
information except the knowledge that noise processes are uncorrelated, MED 
seems to be a good choice. Bee performs sligthly worse than MED but 
consumes less computer time. In the case one does not know if the noise 
processes are uncorrelated, OTI offers a good solution. DTI does not seem to 
depend much on this type of noise. 

The value of the OTI method for physiological experiments remains to be 
established. 

Appendix A 

In this appendix, 2 maximum likelihood estimators for time delay Dare 
derived, firstly in case of a priori known noise processes 11 j and 11 2 , and 
secondly, in case of Cl priori known noise processes, as well as the signal process. 
Using the maximum likelihood philosophy, one takes as estimator fj that value 
which maximizes the probability of measurements x and y that actually 
occurred, taking into account all Cl priori known statistical properties of noise 
processes and signal processes. 

First model: x(i)=s(i)+nj(i) 
y(i) = s(i - D) + 112 (i) 

X={x j , •• • ,xll } 

y={Yj'" ·,Yn} 

S, l1 j and 112 are independent processes. llj and 112 are zero-mean Gaussian 
random processes with covarian~e matrices Rn!lI! resp. R n2n2 . 

To find the ML-estimator D for time delay D, we need to maximize the 
probability density function for given data, with respect to D. 

1 
-(x-yDf R j(x-
2 

p(x, yIRn !lI!' R1I211 " D)= ---='-------;------= 

exp 

Al 
(2n)n IRI2 

where yD is a shifted version of y and R = Rn! n! + R n211 ,. Of course, in case of 
R = 0, no M L-estimator exists. 

Maximizing Al is the same as minimizing MLl (D) where: 

MLl(O)=(x-yDfR 1 (X_yD) A2 

5 Periodica Polytechnica El. 28/2-3 
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ML 1 (D) is the weighted summation of all elements of the estimated covariance 
matrix R"yD, where the weight factors are functions of the a priori known 
elements of Rn1nl and Rn2n2 . 

Second model: 

The second model is equal to the first model, except that s is known to be 
Gaussian and Rss is given. This is the model Knapp and Carter (1976) and 
Scarbrough et al. (1981) considered. We can proceed as we did with the first 
model: 

exp [ - ~ (x, yD)T R -1 (x, yD)] 

p(x,yIRss ' Rnlnl,Rn2n2,D)= 1 A3 
(2IJ)n IRlz 

where: 

Again, the ML estimator does not exist when R is singular. Maximizing A3 is 
the same as minimizing ML2 (D) where: 

M L2 (D) = (x, yD)T R - 1 (x, yD) 

fj is the value of D, that minimizes M L2 (D). M L2 (D) is a weighted sum of all 
elements of the estimated covariance matrices R,,,,, R"yD and Ryy , where the 
weight factors are functions of the a priori known elements of Rnl nI' Rn2n2 and 
Rss· 

Appendix B 

If a priori is known, that n1 and n2 are white zero-mean Gaussian 
processes, the Basic Cross Correlation method and the ML-estimator yield the 
same result. The maximum likelihood estimator can be expressed as (see 
appendix A): 

B1 

Because n1 and n2 are white Gaussian processes we can write: 

R-1= 1 .E 
Rnl nl (0,0) + Rn2n2 (0, 0) 

B2 

where E is the unity matrix. 
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Substituting B2 in Bl: 

MLl (D)=XX+yDyD 2xyD 

min {MLl (D)} =max (xyD) 

B3 is by definition equal to the BCC method. 
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B3 

Likewise, minimizing ML2 (D) (appendix A) in the case nI' 112 and s are 
white Gaussian processes, is equal to the BCC-method. 

Appendix C 

When x and y have a bivariate Gaussian distribution, the AAMI method 
is equivalent to the BCC method. 

where: 

while: 

exp l- - + (x, yDf R -1 (x, y)DJ 
A (D) -PXY x, Y = ---='----------;-----= 

R- (xx 
- yDx 

2lllR 

XyD) 
yy 

Substituting C2 in Cl: 

J D 1 {xx' yy } max lAAM1xy (x, V )f =max (D)' - xx' yy- x, y -

C2 

C3 

In the case considered, C3 yields maximizing xyD. This procedure is, therefore, 
by definition equal to the Bee method. 
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