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Summary 

The statistical theory of quantization makes possible to design measurement procedures 
with quantized data. If carefully interpreted, this theory provides formulae to estimate bias and 
variance of quantized measurements and may show the means to reduce effectively the errors of 
quantized measurements. Limitations of the applicability of the theory are discussed too. 

Introduction 

Nowadays signal processing often means digital processing of con­
tinuous (analogue) signals. The first step of this procedure is to convert the 
signal into a form that can be handled by digital equipment. The conversion 
consists of two main steps: sampling in the time domain (simply called 
sampling) and sampling in the amplitude domain (called quantization). 

These two operations mean a rather rough alteration of the signal (Fig. 1). 
So it is essential to formulate sufficient conditions for sampling rate, 
observation time, quantum size, etc. to provide that the converted signal 
(quantized time series) contain enough information in some sense. 
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Fig. 1. The effect of sampling and quantization 
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It is easy to see that the above two operations may generally be 
investigated separately and that they are generally interchangeable (Fig. 1). 
Thus we shall treat them separately and shall refer to the other only if 
necessary. 

Since sampling is a linear operation (it is interchangeable with 
multiplication by scalars and with addition), sampling can be rather easily 
handled. Its well-elaborated theory can be found in literature. Because of this 
fact only quantization will be dealt here in detail. 

Quantization 

Quantization is a non linear operation which transforms the continuous 
amplitude domain to a discrete one. Because of the nonlinearity, its theory is 
not elaborated in detail, still there are some results which can be used when 
designing measurement procedures. It will be tried to survey them in this paper. 
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Fig. ]. Characteristics of a quantizer 

In the following we will restrict our investigations to zero memory scalar 
quantizers with monotonous characteristics. This means that the quantizer 
does not use any information about formerly quantized values and processes 
only one sample at a time, performing the nonlinear operation (Fig. 2). We shall 
not deal with the design of (in some sense) optimal quantizers; only with the 
analysis of given (generally uniform) ones. 

Because of the strong nonlinearity it is hopeless to arrive at general 
conclusions, but for slochastic signals surprisingly useful results may be 
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derived. So in the following we shall deal with the analysis of stochastic signals 
(please note that some questions of the quantization of deterministic signals are 
dealt with in [3J). Randomness is often not a really severe restriction, since: 

- many fundamentally deterministic processes may be modelled by 
means of stochastic models like random-phase periodic signals, 
transients with slightly random initial conditions etc.; 

- the quantum levels of real A/D converters are generally of slightly 
stochastic nature which can often be modelled by an additive random 
noise [4]. 
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Fiy. 3. The A.D-type quantizer 

In the following sections we shall survey two approaches: the white noise model 
and the characteristicfimctioll method. In general we shall analyze the so-called 
AID-type quantizer (Fig. 3): 

i = 0, ± 1, ± 2 . . . (2.1) 
Yi=uq+ iq 

X~Yi if X(~::::;X<Xi+l 

By means of this quantizer, the general quantizer of Fig. 2 can be modelled as 
well (see Fig. 4). This modelling provides means to derive results for the non­
uniform case, too. 



176 

x 

Compressor 

~ •. X' 

/ X. 

x' 

I. KOLL.4R 

~y' 

-r-~ y' 

Deccompressor 

r .. y~ y' -71-
Fig. 4. Modelling a general quantizer by means of an AjD-type one 

The Noise Model of the Quantization Error 

y 

Let us first consider a simple example. In Fig. 5 the quantization of a sine 
wave can be observed. If the quantization error q(t) is considered, we may have 
the impression that it is more or less independent of the original signal, since it 
describes only signal variations relative to the next quantum level and does not 
take much account of the complete value of the signal. This brings the thought 
to model quantization by an additive noise (Fig. 6). Because of its linearity this 
is a widely used model. 
The noise is generally assumed to be: 

- independent of the signal; 
- of uniform distribution; 

white. 
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Fig. 5. Quantization of a sine wave 
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Fig. 6. The noise model of quantization 

What are the conditions for the validity of the above assumptions? 

z • 
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a) As it has already been stated above, if the quantum size is small enough 
compared to signal variations, independence will be approximately 
fulfilled. 
Note that there must be enough quantum levels to cover the whole 
amplitude domain of the signal. 

b) In the sections of large signal variations q(t) is very similar to a saw­
tooth (see Fig. 5), with uniform distribution. So the condition is similar 
to the above one. 

c) Quantization noise is usually not white, since the "saw-tooth" has 
continuous sections. But when the signal is sampled, aliasing occurs in 
the frequency domain, and the lags of Q(f), which are summed up, may 
give an approximately white spectrum (Fig. 7). This occurs only when 
sampling is not too dense, that is, the greater q is, the smaller the 
sampling frequency is must be. Intuitively, the "frequency" of the "saw­
tooth" prescribes a higher limit to sampling frequency [6]. 
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Fig. 7. The spectrum of the sampled quantization error 
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The assumptions under a) and b) are generally fulfilled, if 

(2.2) 

and if there are enough quantum levels to cover the amplitude domain of the 
signal (that is, truncation error is negligible). This model is called fine 
quantization. When the conditions are fulfilled, it gives rather good means to 
describe the effect of the quantizer. 
Unfortunately the (2.2) condition is generally too severe, and still not exact. The 
prescriptions for measurement errors are generally more moderate and this 
means that we have to use more refined models to describe quantization. 

The Characteristic Function Method 

Stochastic signals can generally be described by their probability density 
functions. The probability density function of the quantized y(t) signal can be 
easily expressed with that of x(t) (see Fig. 8): 

T. 

Py(z) = 
i= x, 
L Pib(z- yJ, 

(2.3) 
Xi 

Pi = S Px(z)dz. 
Xi 1 

The (2.3) expression makes possible to analyze the statistics of}" but this may be 
rather troublesome and the formula is not suitable to be analysed. However, 
Fig. 8 shows that quantization is a sort of sampling of Px(z). This gives the idea 
to try to analyse the Fourier transform pair of py(z), the characteristic function 
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Fig. 8. Construction of the probability density function of a quantized signal 
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[lJ, [2J, [5J, [7J, just as in case of analysing sampling. Omitting the 
troublesome derivation, we obtain for the uniform characteristics (2.1): 

W) CIOS . - f.L·' k ( 2nk). (q'Y. ) y('Y. = _ rf_ py(z)eJ3.-dz = k =~ x e 'J-Tt !lJ;V~ 'Y. - q SlnC 2 -nk ,(2.4) 

where 

! sin (x) 'f . 
-- 1 x#O, 

. x 
Slnc(x)= 

- 1 if x=O. 

Studying (2.4), a theorem similar to the Nyquist sampling theorem can be 
formulated: when W,('Y.) is 'Y.-bandlimited, that is, 

(2.5) 

Wx('Y.) can be calculated from Wy('Y.), so there is no statistical information lost. 
Moreover, in the band n n 

-- <'Y.< q Cf 

the characteristic function is equal to 

W . (Cf'Y.) y('Y.) = J;Vx('Y.) SlnC 2 ' 

which is exactly the characteristic function of the sum of the original signal and 
an independent, uniform distribution noise. 
In measurements usually moments of the signals are to be measured. Since 

E .r x"1.· _ 2. d
n 

Wx ('Y.) 
l J -'n d ni' J 'Y. 2=0 

t W (at) 

I Wx (et) slne( qf) 

2'1t' 
"Cl 

Fiy. 9. The condition of E :x) = E (y) 

(2.6) 
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it is enough if WAa) can be restored in some environment of a = 0 (see Fig. 9). So 
the quantization theorem is as follows: if 

2n 
WAa)=O for lal> - -8, D>O, 

q 

the moments of x can be calculated from the moments of y: 

E{x}=E{y} 

1 

EJ x 3) =E Jy31_3EJ y } q-
l' f l! l 12 

1 4 

E f 4} E f 4) 6Ef 2) q- q 
\x = U·' f - \y f 12 - 80 

(2.7) 

(2.8) 

The formulae of (2.8) are the so-called Sheppard-corrections. (Corrections 
appear because of the sin(x)/x factor in (2.4». Note that in an environment of 
a = 0, W-;.(a) behaves just like the characteristic function of the additive, 
independent, uniform distribution noise model. Thus, considering the 
measurement of moments, (2.7) is a sufficient condition for the validity of the 
noise model (there exists a sufficient and as well necessary condition too, see 
(2.IS». The Sheppard-corrections can be calculated from the noise model as 
well. 

Just like by sampling, there is no real signal which would fulfil the (2.S) 
condition (this would mean arbitrarily great signal amplitudes). However, 
some signals may approximately fulfil it, e.g. the Gaussian one: 

(2.9) 

As an example let us consider the distortion of the measurement of the mean in 
the case of a Gaussian signal [S]. From (2.4), (2.6) and (2.9) 

(2.10) 

This is a Fourier series as a function of f1.x' Since it converges very quickly (if q 
< 30' x' the error is less than 1.S% [S]), the maximum value of the relative 
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Fig. 10. The maximal distortion when measuring the mean of a Gaussian signal with quantized 
data 

distortion may be expressed with the amplitude of the first term: 

I I 
I bmax I 1 - 21t2,,~ 

Grmax = -- ~ - e q2 • 
q IT 

(2.11 ) 

This function is plotted in Fig. 10. The diagram shows that the mean of 
Gaussian signals can be measured with small distortion even in the case of 
rough quantization. 

Dithering 

If a signal does not even approximately fulfil the (2.7) condition of the 
quantization theorem, or the required q would be too small, a special technique 
called dithering can be used. 

Let us consider what happens when an additive, independent noise is 
given to the signal. Since 

cJJ 

Px+n(z)= S pAz-u)Pn(u)du, (2.12) 
-cv 

the characteristic function is: 

cJJ • (2ITk) ( 2ITk). (qrx Wy(rx)= L e+J21tkuWx rx- -- ~ rx- -- smc -
k= -- co q q 2 

ITk) .(2.13) 

If E {n(t)} = 0, the additive noise does not change the mean of the continuous 
signal, but it may still help to fulfil (2.7). This technique is called dithering, n(t) is 
the dither. n(t) may be for example Gaussian. 
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However, not only (2.7) can provide the means of x and y being equal. 

If n(t) is of uniform distribution in the [ - ~, ~ ] interval, (2.13) will be 

the following: 

~ .... , k ( 2nk). 2 (qa ) ~(('.()= L. e' J-1t uWx ('.(- - SInC -2 -nk . 
k=-oc q 

On basis of (2.6) it is easy to show that in this case 

E{y}=E{x}, (2.14) 

independently of the distribution of x. To be more general, the uniform 
distribution noise model is valid, because n(t) fulfils the sufficient and necessary 
condition of Sripad and Snyder [14]: 

W(2;k)=o forall k=±1,±2... (2.1Sa) 

Condition (2.lSa) directly follows from the expression of the probability 
density function of the quantization error: 

1 1 k=oc (2nk) . 21tk= 
Pnq(z)=-+- L W" - e-) q, 

q qk=-oc q 
k*O 

(2.1Sb) 

However, (2.1Sa) provides only the uniform distribution of the quantization 
error, and not the independence of x(t) and n(t) (see [3J, [14J). For the latter (2.7) 
is sufficient. 

0.5 

0.1 

t max b(oxl 
q 

2 4 5 A 
q 

Fig. 11. The maximal distortion when measuring the mean of a uniform distribution signal with 
quantized data 
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Realization of the Dither 

Let us emphasize that (2.14) is a theoretical result in the case when the 
peak-to-peak amplitude A of the dither equals exactly q. When this is not quite 
true, the distortion may rapidly rise with I A - q I (see Fig. 11, [5J). 

This is a reason why a simple uniform white noise is usually not used in 
practice. With a Gaussian dither for example the estimation of the mean would 
be less sensitive to alterations of the standard deviation of the dither (see Fig. 
10). 

However, there is a special case when the amplitude of the uniform 
distribution noise has nothing to do with q: the one-bit quantizer (comparator) 
with uniform distribution dither. This is the so-called stochastic-ergodic 

x (t ) 
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FiQ. 12. The stochastic-ergodic converter 

, 
A 

converter (Fig. 12, [8J, [9J). In this case, if the inequality 

A 
Ix(t)1 <"2 

x+n .. 

holds, x(t) + n(t) will never surpass the next quantum level, that IS, the 
comparator "simulates" a uniform quantizer with the parameter 

q=A, 

so the condition for the dither amplitude is automatically fulfilled. The 
accuracy of the measurement of the mean is determined by the accuracy of the 
knowledge of A. 

A good example for a much more sophisticated realization of the dither 
can be observed in the HP3582A spectrum analyzer ([10J, Fig. 13). In this~ 
instrument a sine wave of peak-to-peak amplitude U pp;:;::; 23q is used as a ditherx 
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x (t) 

IH(!)i 

Fiy. 13. Dithering in the HP3582A spectrum analyzer 

As its frequency (27 kHz) is beyond the analyzer band, the main wave itself is 
filtered out (thus its variance is eliminated from the measurement) and its 
quantization error is a rather high quality uniform distribution white noise, 
since U pp»q, and the sampling frequency is rather low related to the 
"bandlimit" of the quantization error. Moreover, since the sine wave makes use 
of several quantum levels, it helps to average their distortion. 

Practical Limits oJ the Theoretical Results 

With the characteristic function method we have proved that in the case 
of AID-type quantizers the bias of the estimator of the mean may be effectively 
reduced, that is, measurements below the quantum size are possible. However 
this theory does not deal with two important viewpoints: 

a) Although exact quantum levels may well describe the effect of 
roundings in some arithmetics, in AID converters the quantum levels 
are not as exact as supposed by the theory. These levels not only have 
some variance, but their distortion is guaranteed only to be within e.g. 
±O.S LSB. This fact often makes the resolution improvement illusory. 
What can still be done is to find a model for this distortion. Hit may be 
described by some "overall" distortion function, the measured values 
may be corrected after (self-)calibration (see Fig. 14); if the distortion of 
the quantum levels is irregular, relatively large signal variations may 
help, since irregular deviations work against each other. 

b) Dithering may reduce distortion even in the case of rough quantiza­
tion, but the variance increases. The growth G of the variance of a 
sampled value depends on the dither and the signal itself, and is 
bounded by 
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Fig. 14. Deviation from the theoretical quantum levels in an AID converter 

G is zero e.g. if the signal equals the midpoint of a quantization interval 
with probability 1, and a dither of uniform distribution between 

[ - ~ , ~ ] is used; G may be close to the upper limit in the case of a 

binary dither (which is a very clumsy choice). 
If the dither and the signal fulfil certain conditions (e.g. Px+d(Z) is relatively 
smooth and covers at least a few quantization intervals), the additive term in 
the variance may be well approximated by 

or by G ~ q2/12 if the dither is filtered out (see e.g. H P3582A). 
This increase in the variance may not always be tolerated. Thus if enough 
averaging is not possible to overcome the variance, the use of high-resolution 
A/D converters cannot be avoided. 

The Measurement oJ Second-order Moments 

For higher-order moments the theory is rather similar to the previously 
presented one. In the case of non-uniform quantizers the general expression for 
the second-order moments is: 

Rya •Yb = L LYa.mYb.nPm.,I' 
m n 

(2.16 ) 
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The two-dimensional characteristic function may be defined as follows: 
oc oc 

WXa.Xb(CXa, CXb)= S S P (u V)ei(CZaU+CZbV)dudv 
Xa,Xb ' • (2.17) 

OC 

In case of uniform quantizers there is no distortion, if ~'a.xJxa' Cl.b) is limited in 
both directions. Independent dithers may be used in both channels to decrease 
or to eliminate distortion. If the dithers are not independent, their joint 
moments appear in the result (see e.g. the expressions (2.8)). 

However, for Gaussian signals some special and very effective techniques 
exist. For the investigation of the distortion of roughly quantized Gaussian 
processes the Price theorem [11] provides a theoretical background: if for the 
function 9 the inequality 

) I ( d' d) Ig(xa'Xb <c'exaTxb 

holds for c > 0, d < 2, and X a , Xb are of normal joint distribution, 

(2.18) 

where 

From (2.18) the following expression may be derived: 
j. 

E{g(xa,xb)}= f E{~ ,a:. g(Xa,Xb)} di.+ E{g(xa, Xb)}1 ' 
OXaOXb A=O 

(2.19) 

o 

and this expression can be evaluated in special cases of rough quantization. 
According to theoretical results for zero mean Gaussian processes the 

correlation coefficient may be measured without dither even with rough 
quantizers, since the distortion can be calculated and so removed. 

Fig. 15. Correlation measurement of Gaussian signals with a comparator in one of the channels 
(Relay-correlator) 
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In the literature [5J, [12J, [13J it is shown that for zero mean Gaussian 
processes 

(2.20) 

that is, with the equipment shown in Fig. 15 the correlation between Xa and Xb 

can be measured. The correction is simply a multiplicative factor, I Ub; Ub may 

be measured separately, if needed. As the factor is the same for any time delay 
between the samples Xa = xa(t), Xb =xb(t + r), the shape of the correlation will be 
correct even if Ub is not known. The variance, supposing independent 
measurements, is as follows: 

var{ita.xJ= ~ var{XaSignXb}='~[l- (~)Zr;bJ. (2.21 ) 

In Fig. 16 the variance of the averaged correlation coefficient estimator 

/).; \0 n 1 1 ~ f;,i) = -2 - - .1... (xa sign Xb)i 
U a N 1=1 

is plotted as a function of r ab: 

{:;(Z)} _ 1 [(n)Z 2 ] var r ab - N 2" - r ab . (2.22) 

It may be observed that the variance is comparable to that of the measurement 
with fine quantizers: 

f:;(I)} 1 (1 2) var lrab = N +rab' (2.23) 

i variance 

-wz I 3 

1 -1----N 

Irl 

Fig. 16. The variance of different correlation coefficient estimators for Gaussian processes 
I - Correlating by means of 2 line quantizers 

2 - Correlating by means of a line quantizer and a comparator 
3 Correlating by means of 2 comparators 

7 Periodica Polytechnica El. 28/2-3 
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Theory provides that the correlation function can be measured with two 
comparators as well [5,12,13]: 

E {sign (xa) sign (Xb)} = ~ arcsin r ab' 
re 

(2.24) 

This means that the circuit of Fig. 17 (the so-called polarity coincidence 
correlator for Gaussian signals) estimates rab approximately without distortion 
if N is great. 

UfO COUNTER 
1 ~ab 'It' ""FT sinT (.) 

Fig. 17. Polarity coincidence correlator for Gaussian signals 

For the estimator 

~~) = sin [i ~ Jl (sign (X a) sign (Xb))i] 

the variance may be calculated with the binomial model of p [9]: 

var {r~~)} = ~ [ (i) 2 - arcsin 2(r)] [1 - r2] . (2.25) 

It can observed in Fig. 16 that the polarity coincidence correlator is not only 
simpler and quicker than a common correlator, but its variance is also smaller 
in the case of: I rabl > 0.59. For the much more complicated case of correlated 
samples see [15]. 
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