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Summary 

The implementation of digital filters involves the use of finite precision arithmetic. This 
leads to quantization of the filter coefficients and the results of the arithmetic operations. Such 
quantization operations are nonlinear and cause a filter response substantially different from the 
response of the underlying infinite-precision model. This paper intends to give an introductory 
survey of finite wordlength effects and proposals how to reduce them. 

Introduction 

In recent years many studies investigated the finite wordlength effects in 
digital filters [1-2]. This paper, intended for the non-specialist, presents 
through very simple examples the main problems of the digital filter 
implementation and some of the methods which may improve the overall filter 
performance. 

A recursive digital filter generates an output, Yn' as follows: 

Yn=f(Xn-k'Y" j); k=O, 1, .. . ,M-I; j=I,2, ... ,N-I (1) 

where Xn is the present input. Typically, f( ) approximates but never exactly 
duplicates a linear function because of limited precision in real im
plementations. Moreover, recursively applying the nonlinear function, f( ) can 
lead to self-sustained oscillations (limit cycles), the parameters of which depend 
on the type arithmetic, type of quantization, number of quantizers and the filter 
structure. Due to the relatively small dynamic range even overflow oscillations 
may occur. These large-scale limit-cycles depend on the overflow arithmetic 
applied. Generally saturation arithmetic provides better performance than 
two's complement arithmetic. 

In a nonrecursive digital filter, since no feedback is involved, limit cycles 
do not disturb the overall behaviour of the filter, however, overflow cannot 
always be avoided even if the input signal level is relatively low. 

Quantization of filter coefficients in any kind of digital filters may be 
considered as a deterministic change of the filter characteristics which can be 
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minimized by a structure and parameter-value dependent quantization 
scheme. 

A third component of the non ideal behaviour derives from the 
quantization of the internal arithmetic operations. For example, when fixed
point arithmetic is used, the products are usually quantized to the original 
wordlength. This leads to a fluctuating error, often called quantization noise. 

In the following five sections illustrations are given to show some details 
of these problems. Section 2 demonstrates the zero input limit cycles which 
even for a first-order recursive filter, may produce a relatively high error signal 
amplitude. Section 3 presents the widely used quantization noise approach and 
the correlated noise problem, generally neglected in usual considerations. 
Section 4 is devoted to the scaling problem which always leads to a compromise 
between overflow error probability and dynamic range. Section 5 deals with 
quantization strategies, while section 6 briefly investigates the digital filter 
structures. 

Obviously, in order to achieve an optimum or nearly optimum filter 
performance, due to nqnlinearity, the above-mentioned effects cannot be 
treated separately, but should be considered in a common framework. Such a 
framework, however, does not exist and so there are several open questions to 
be answered in this field. 

Zero input limit cycles 

In this section, instead of a detailed analysis, only a simple example is 
given, the generalization is straight-forward. Let us consider the first-order 
recursive filter with a single quantizer (Fig. 1). In Figure 1. Q denotes a 
quantizer for which 

(2) 

where B is the wordlength. In the particular case when 

(3) 

:t looks like if it were ± 1. This may happen if 

(4) 
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which implies a parasitic (possibly zero frequency) oscillation whenever Yn - 1 

differs from zero. The limit given by expression (4) may be considerably high, 
thus relatively high amplitude oscillations may occur. 

. 127 1 
As an example, If B=7 and 10:1 = 128 ~O.992, then IYn 11::;; 2 . A 

detailed investigation shows that if sampling frequency is too high relative to 

Xn ----ll>\ l------"--- Yn 

Z-l unit 
delay 

Fig. 1. First-order recursive filter section 

the filter bandwidth, then 10:1 will be close te the unity. This fact, in conjunction 
with the above example, also emphasizes that sampling frequency relative to 
filter bandwidth is a very important design parameter. 

The quantization noise model 

A great many technical problems can be solved at least to a certain extent 
if instead of a deterministic approach appropriate noise models are applied. 
This is the case even considering quantization errors. 

In this section the white noise model of a simple second-order section is 
presented. Consider the second-order recursive filter with two quantizers (Fig. 
2). 

The uniform quantizer Q with B quantization steps can be modelled, 
under certain circumstances, by an additive noise source for which we assume 
that: 

- the error (noise) sequence {en} is a white noise sequence 
- the error sequence has a uniform distribution in each quantization 

interval 
- the error sequence {en} is uncorrelated with the input {xn} 
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If this model is valid, then 

-1<e<1. 2 n- 2' 
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2 
6 2 = q 

e 12 (5) 

where 6; is the noise variance. The output noise variance 6~ can be calculated 
using the following formula: . 

q2 1 + r2 
6 2 - - ? -- ----;;----"7 

}' - 12 - 1 - r2 1 + 2r2 cos 8 + r4 (6) 

where r is the pole distance from the origin (r < 1), 8 is the pole angle to the real 
axis. 

• M _ ._ 127 2~ 2 I' As an example, lf 8-0 and /- 128' then 6y ~646e \\hlch may be 

unacceptable in many applications. 
The white noise model is very often used for its simplicity even if the 

conditions for its application are not always completely fulfilled. 
It is rarely considered that the error sources modelled by white noise 

sequences may be correlated and that significantly modifies the output error 
variance. Let us investigate the case (Fig. 3) where a signal is weighted by two. 
different constants (XI and (X2' Using the white noise model, the weighted 
samples following the quantization can be described by the quantized value 
and an additive white noise sequence. The two error sequences, {e I} and {e 2 } 

however, will be correlated to an extent dependent on the weighting 
coefficients. By definition the correlation coefficient 

E{elez } 
r 12 = E{ei} E{d} 

The coefficients and their ratio can be expressed in the following form 

R= (Xz = K 
ex l J [JJpK 

Xn Xn Yn 

Q 

Fig. 2. Block diagram and white noise model of a second-order recursive filter section 

(7) 

(8) 
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e, = et, x - Q [oG, xl 

x 

Fig. 3. Correlated quantization noise model 

where q is the quantization step, K and J are integers, and [K Jp] denotes the 
prime factors of K which are not prime factors of J, while [J]PK denotes the 
prime factors of J which are not prime factors of K. 

For the sake of simplicity let us suppose that the input signal was not 
quantized. In this case 

sign [R] 
r 12 = if [K Jp] and [J ]pK both are uneven, 

[K]p] [J]pK 

sign [R] 
r p = - if [K Jp] is uneven and [J ]PK is even 

- 2[K]p] [J]pK 

or vice versa. From these expressions the correlation is obviously maximum if 
0: 1 =o:z=>r 1Z = 1, and the correlation is minimum if 0: 1 and 0:2 are relative 
prImes. 1 

As an example, if0: 1=8q, 0:2=9q, r 12 =- 144 and if:'l.1=8q. :'l.2=10q. 

1 
r 12 = - 40' 

The scaling problem 

To keep the probability of internal overflow within acceptable bounds, 
the dynamic range at certain summing nodes of the filter must be limited. 
However, the more limited the dynamic range, the greater the effect of round off 
error. The investigations of this interaction between roundoff noise and 
dynamic range show that the round off noise is sensitive to the input signal level, 
the form of realization and, in case of cascade realizations, sensitive to the way 
in which terms are grouped in the factorization of the transfer function, as well 
as sensitive to the sequential ordering of the subfilters. 
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To find an acceptable input signal level a compromise must be achieved 
by setting the scale factor of the filter (see Fig. 4), between limited dynamic 
range and round off error. If the form of realization is given, there are three basic 
suggestions for this scaling problem in the underlying theory. The mathemat
ical background of these methods is the so-called functional analysis which 
provides effective tools for such and similar problems. 

Fig. 4. The scaling problem 

11 scaling 

Let us consider the input/output relationship of the filter using the 
weighting function method 

(9) 

where hk denotes a sample of the discrete weighting function. If Yn should be a 
limited value, the same is valid for Xn' for every n. If y" is limited by ± 1 then 
from the inequality 

~ ~ 

ly"l:::; L Ihkllxn-kl:::; max Ix,,1 L Ihkl (10) 
k=O k=O 

it can be derived that 

maxlx 1=---n x (11 ) 

L Ihkl 
k=O 

This method always works but it is rather pessimistic and gives unacceptably 
low Xn levels. 

La: scaling 

In the frequency domain the following requirement may be fulfilled 

max [SH(z)lz=ejWTJ < 1 (12) 
-rr<wT <it 
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where H(z) denotes the transfer function, S the scale factor, w = 2nJ the angular 
frequency and T the sampling period. This approach is good for sinusoidal 
input signals, in other cases it is rather optimistic. 

L2 scaling 

Based on energy considerations the following method provides a good 
compromise for the scaling problem. The input/output relationship of the filter 
in the frequency domain is given by 

Y(z) = H(z) X(z) 

Using Parseval's formula and Schwartz's inequality 
2rr 

2it 

(13) 

= f H(ejwT ) H(e- jwT) X(eiwT ) X(e- jwT) dwT ::;; (14) 
2n 

o 

::;; LXlf H(ejwT)H(e-jwT)dwT 
Vk 

o 

According to this approach the scale factor S should be 

S = [21tf H(eiwT ) H(e- iWT) dwTJ 1/2 
o 

Quantization strategies 

(15) 

As already stated, the different finite wordlength effects are highly 
interrelated. The quantization strategy seems to be a key element since an 
appropriate strategy (together with an appropriate structure) may eliminate 
the severely nonlinear behaviour of the digital filter. 

The first attempt is generally to apply zero memory quantizers because 
their implementation is much easier than that of any other type. Typical 
methods are rounding, truncation and "random" rounding where in the usual 
case a random source selects between rounding and truncation. 
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A far more effective solution can be obtained if the quantizers have some 
memory and the so-called controlled rounding can be applied. This approach 
however, r~quires considerable additional hardware [4, 5]. 

But even if we have a highly effective quantization strategy (possibly on 
chips), we must select an appropriate structure to achieve a satisfactory 

a 

Xn Yn 

a 

Fig. 5. The coupled loop structure using signal flow graph notation 

solution. As an example we mention a very attractive structure, the so-called 
"coupled loop" one (Fig. 5), which is free of overflow oscillations. In this 
structure large quantization limit cycles are possible if rounding is applied, 
while, using truncation, such limit cycles can be avoided [6]. 

Filter structures 

Any digital filter can be realized in a great number of different structures 
[1, 8]. These structures, however, differ considerably regarding their accuracy 
in case of limited wordlength. 

Since in the literature there are a lot of publications which investigate 
structural problems, here only a simple example is given. In Fig. 6 there is a 
simple second-order section with a transfer function: 

H(z) (16) 

where 1n l , m2 are real parameters, r, 8 are the pole location parameters. The 
parameter sensitivities of the pole location parameters can be expressed as 
follows 

( 17) 
a8 1 88 1 

Se = __ = _ . Se = -- = - ---::---
ml am

l 
2r sin 8' m2 am2 2r2 tg 8 
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These sensitivity values will be considerably high if the pole pair is near the unit 
circle and the real axis. This means that any quantization error in the 
parameters will cause a large deviation in the pole location and thus destroy 
overall filter performance. 

Yn 

Fig. 6. A simple second-order section 

If we introduce free parameters this situation can be changed. Let us 
introduce a new complex variable, wand two real parameters, c and d and 
combine the new variable and the parameters in the following manner [7J 

w 
Z= +d 

c 
( 18) 

If we substitute this variable into the transfer function (16), and fix the 
introduced parameters in the following way 

1 
c= . ; 

rsme 
d=r cos e 

then the pole location sensitivities can be expressed as 

S~=cos e 
Se- _ sin e 
d-

r 

S~ ,=sin e 
e cos e 

S-,=--
C r 

(19) 

(20) 

This transformation solves the above sensitivity problem and gives a new 
structure which is equivalent with the coupled loop structure of Figure 5. In the 
literature several similar approaches are given [2, 3, 9]. 
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Conclusion 

This paper intended to survey briefly the finite word length effects in 
digital filters which, due to the basically nonlinear behaviour, are strongly 
interrelated and therefore difficult to handle in a common framework. 

A great many investigations, provide, however, useful proposals for 
reducing errors caused by these effects. The importance and effectiveness of 
these methods and proposals was illustrated by very simple examples. 
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