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Summary 

This paper deals with the FFT -based methods which can be used to estimate the power 
density spectrum of stationary stochastic signals. It reviews some errors of the digital spectrum 
estimation, especially those due to finite word length representation, and some suggestions are 
presented to reduce the effects of limited word length in hardware realizations. 

Introduction 

In analysing stationary stochastic signals one of the most essential and 
most frequently applied methods is the power density spectrum analysis. 

Many methods have been developed to analyze the spectrum, but all the 
digital methods can be regarded as different versions only of two basically 
important spectrum estimation procedures. 

- In the Blackman-Tukey (B-T) method first the autocorrelation 
function is calculated using the input data points, then the power density 
spectrum estimator can be computed as the discrete Fourier transform (DFT) 
of the autocorrelation function. 

S)k)= I Rjl)·e-j2rdk/S (1) 
1 

where Rjl) is some estimator of the autocorrelation function. The so-called 
sample autocorrelation function is a possible estimator of R.AI). Using the 
. d . {1 N 1 mput ata pomts Xnf;,=O 

~ 1 .\"-1-1 

Rx(l)= N n~o X n · X n + 1 (2) 

- Using the direct Fourier transform method the first step is to compute 
the DFT of a gIven time-limited data record, then the spectrum can be 
estimated by 

Sjk)= ~Ii:t: Xn.e-jlrrnkINll (3) 

where {xn}~:J represents again the input data points. 
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This latter estimator is often called a periodogram. The importance of the 
direct method has increased since the development of the fast Fourier 
transform (FFT) algorithm. (The application of the FFT algorithm greatly 
reduces the calculation time, so in the B-T method it is often applied for the 
estimation of the correlation function as well. In this case the estimator of the 
correlation function can be determined calculating the inverse FFT of a 
preliminary spectrum estimator. The preliminary estimator can be calculated 
using periodograms. The lag-windowed correlation function is then trans­
formed back to the frequency domain [1J). 

The various methods differ concerning the speed, the amount of 
calculations or the properties of the result. The direct method needs less 
computation but its drawback is that using one periodogram as an estimator, 
the variance is very large. As an example, if the data points come from a 
Gaussian process it can be shown [2J that var {S x(k)} ~ S;(k), where Sx(k) is the 
true spectrum. To improve the properties of the estimators various modifica­
tions of the two essential methods have been developed. Different windowing 
techniques in the time-, lag-, or frequency domain or averaging over the 
periodograms are the most important possibilities [3J, [4]. Whichever method 
is used, the estimator will never be error-free. The errors are partly due to the 
limited length data record and due partly to the finite word length number 
representation. In the following a short review of the effects of the finite word 
length is given. 

The effects of the finite word length 

In digital signal processing whether we use software or hardware means, 
the data are represented by a finite number of bits. The software im­
plementation mostly uses floating-point numbers whereas in hardware 
solutions usually fixed-point numbers are preferred. To increase the computing 
speed or to reduce the hardware complexity needs as short word length as 
possible. But the limited word length, especially when fixed-point numbers are 
used introduces accuracy problems. 

To compute the spectrum estimator the tasks to be performed are: 
data collection, 

- preprocessing (e.g. applying some data window) 
computing the Fourier coefficients, XN(k) using one of the FFT 
algorithms, 

- smoothing in the frequency domain (optional), 
- squaring and averaging. 
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Therefore, the major error sources are: 
- A/D conversion (input data quantization), 
- applying finite word length data window, 
- accumulation of errors caused by rounding the arithmetic during the 

FFT, 
- representation of the sin/cos coefficients by finite number of bits. 
The analysis of the error sources is important because on the basis of the 

results the following questions may be answered: 
- How can one take into consideration the effects of the various error 

sources? 
- How can the appropriate A/D converter be chosen? 
- Can an optimal sin/cos coefficient set be found? 
- Which FFT algorithm (radix2, radix4, DIT, DIF, etc.) is the less 

sensitive to quantization? 
- Is there any way (e.g. modification of the processing algorithm) to 

decrease the effects of quantization? 
- etc. 

The effects of the quantization of the input signal 

The input data points, which are samples of a stochastic signal, can be 
regarded as the realizations of random variables. Quantization obviously 
changes the statistical parameters (expected value, variance) of these random 
variables. The influence of quantization can be determined by applying the 
quantizing theorem [5]. Using a uniform quantizer (Fig. 1) and if the input 
signal is a Gaussian one the expected value and the variance after quantization 
are approximately as follows [6]: 

(4) 

and 

(5) 

where 

- mx is the expected value } 
- (J x is the variance of the input data before quantization 
- q is the quantum size. 

8 Periodica Polytechnica El. 28/2-3 
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Assuming that the input signal has a zero mean value, the parameters in the 
quantized case are: 

(6) 

(7) 

In this case only the variance is changed. The first term in (7) is the variance of , . 

the unquantized signal. The second term i; can be regarded as the variance of 

an additive noise with uniform probability density function over [- i, + ~ ] 
which is uncorrelated with the signal. The third term is the largest term of the 
approximation error (other terms are neglected). This error term can also be 
neglected if the u/q ratio is larger than a given value. Assuming that u/q = 1, the 
sum of all error terms (including the third term in (7» is approximately 10 8 u;:. 

If the expected value ofthe input signal is not zero and if u/q = 1, the error 
term in (4) is about 10- 9 q. The quantum size can therefore be choosen in such a 
way that the effect of quantization may be modelled by an additive, uniformly 
distributed noise which has no correlation with the signal. (Fig. 2) Because of 
the presence of this noise the spectrum estimator will be biased and its variance 
will be increased. 

The bias and the increase of the variance can easily be determined if the 
following assumptions are valid: 
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- The input signal is a stationary Gaussian white noise process, 
therefore the input data points {xn} are mutually uncorrelated 
random variables with zero mean and 0"; variance, 

- the quantization noise is statistically independent of the signal. 

Fig. 2 

It can be seen, that the propagation of the signal and that of the noise 
through the whole FFT calculation are similar. If the input data is Gaussian, 
the XN(k), the DFT of the input data is also Gaussian with zero mean and with 

? 

a variance proportional to 0"; + i; . 
Having squared the X N(k) values, the points of the periodogram are 

obtained. It can be seen that 
2 

E {IX N(k)12} = var {X N(k)} "-' 0"; + i2 (8) 

which means, that the bias is proportional to i~ and SOC it can be corrected. 

According to our assumptions the points of the periodogram are 1.2 

, q2 
distributed random variables with a variance proportional to u; + 12' If 

er x?:::. q, the increase of the variance, because of the input quantization, is less 
than 17%. If the input data are not Gaussian but its probability density 
function is known, the quantizing theorem can be applied and the effects of 
quantization can be determined. But the calculation is usually rather 
cumbersome. 

The errors of fixed-point FFTs 

In the spectrum estimation the most complex operation is the FFT 
computation. 

The effects of quantization, the propagation of the error depends on the 
implemented FFT algorithm, so it is necessary to study different FFT 
algorithms. 

8* 
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The subject of roundoff error in the FFT has been studied in many papers 
[7J-[1O]. Next a review of the main point is given. 

The various error analyses are based on different error models. In the 
most often applied model the effect oflimited word length is considered as the 
presence of an additive, uncorrelated noise with known statistical properties. 
The propagation of the noise of the different error sources is taken into 
consideration and the mean-squared value of the output error is determined. 

Welch [7J studies the most often applied radix 2 DIT FFT algorithm. In 
this case the FFT is an ordered set of M = log2 N stages of N /2 computations 
termed as butterfly calculations, where Nis an integer power of two, the 
number of the input data points. Each butterfly calculation has two points X(i) 
and X(j) as inputs. The output points are obtained through complex 
multiplications and additions using the complex sin/cos coefficients W k which 
are the appropriate integer power of W = e - j 2rr/N. A butterfly operation at the 
stage m is as follows: 

Xm+ l(i)=Xm(i)+ Wk. Xrn(j) 

X m+ 1 (j)=X m(i)- W k 
• Xm(j) 

(9) 

The results of the intermediate stages of the calculations Xm+ 1 (i) and 
X m + 1 (j) are used as the inputs to the next stage and the results obtained in the 
last stage are the transformed values. A general butterfly operation given by (9) 
can be expressed in terms of real arithmetics. 

and 
ReX m + 1 (i) = ReX m (i) + Re Wk. ReX m(j) - Im Wk. ImX m(j) 

ImXm+ di)= ImXm(i) + Re Wk. ImXm(j)+ Im Wk. ReXm(j) 

There are two errors generated during a butterfly calculation: 
- the error due to rounding after every real multiplication, and 

(l0) 

- the error caused by the right shifts which are necessary to prevent 
overflow at every real addition. 

Using a b-bit plus sign data format the rounding of the multiplications to 
a b-bit number gives a uniformly distributed noise in the interval [ - r b /2, 
+ 2 - b /2]. This noise has zero mean and L1 i = 2 - 2b /12 variance. 

As a result of the right shift, a zero mean noise is generated with 
L1 ~ = 2 - 2b /2 variance. 

Welch assumes the uncorrelatedness of the noise and one overflow 
occurring in every stage which needs stage-by-stage right shifts. 

Recognizing that in the first two stages there are only error-free 
multiplications, Welch determines the variance of the noise at the output. 
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The increase of the variance from the m-th stage to the (m + 1)-th stage is: 

var (m + 1)=2var (m) +4m+ 1 LlI +4m+ 1 Ll~ 

Using this relation, the mean square value of the output noise is: 

2- 2b 

var (M)~8N2 LlI =8N2 12 

(11) 

(12) 

From (12), and if we calculate the propagation of the signal through the FFT, 
the ratio of the rms noise output to the rms signal output can be determined. 

rms (error) '" fo2 -b. 0.3 . j8 
rms (signal) '" rms (input) 

(13) 

The error to signal ratio increases as fo which means a 1/2 bit/stage increase. 
Thong and Liu [8J extended Welch's results. They give expressions of the 

output error for different radix 2 algorithms using rounded or chopped 
arithmetic. This gives the possibility to compare the effects of rounding and 
chopping and to compare the DIT and the DIF algorithms. 

The results show that: 
- the quantization noise in the rounded case is significantly smaller than 

in the chopped case, 
- from the point of view of roundoff errors there is no significant 

difference between the DIT and the DIF algorithms. When no 
rescaling is necessary, the DIT algorithm is more appropriate than the 
DIF algorithm. However, using the stage-by-stage shift method the 
DIF becomes superior. 

This can be explained by the differing influence of error-free multiplica­
tions in the two algorithms. The error-free multiplications are at the first two 
stages of the DIT and at the last two stages of the DIF algorithm. For both the 
DIT and DIF algorithms the properties ofthe error propagation show that the 
sooner an error is introduced the more output points are affected by it. When 
no shift is done the lack of an error term in the first steps has a larger effect at the 
output than if the case when the last steps are error-free. When stage-by-stage 
shifts are done the errors introduced in the first steps are smaller than those in 
the last steps so the DIF is better than the DIT. 

Remarks 

1. The comparing of the two types of errors arising during the FFT 
calculations shows that Ll~ = 6LlI i.e. the error caused by the right shift is larger 
by almost an order of magnitude than the error due to rounding. The previous 
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results [7J, [8J assume that either shifts are needed at every stages, or there is no 
shift at all. The former case gives a somewhat pessimistic result and in the latter 
case the result is overly optimistic. 

For a more realistic error analysis we ought to estimate the total number 
of required shifts. Kaiser and Knight [9J give an expression which 
approximates the number of shifts SM: 

M 1 Pn 
SM;;;'; -2 + og2- :::;M+1 

Po 
(14) 

where Po and Pn are the peak/rms ratios of the input and output signals, 
respectively. It is obvious that Pn is known a posteriori only, but sufficient 
information about the spectrum will often be available to permit a reasonable a 
priori estimate. 

2. The previous investigations assumed that the different errors can be 
modelled as uncorrelated additive noise. The validity ofthis assumption can be 
proved using the quantizing theorem. 

If the signal is Gaussian and (5/ q ~ 1 the additive noise model is true with 
great accuracy. However, if we study the round off error after the multiplica­
tions in a butterfly, we can see that this assumption is not always valid. If e.g. 
Re W« 1 the variance of the multiplication Re W· ReX m (i) will be (RelVf . (5;. 
Its effect is as if the quantum size were liRe Wtimes as large as the original one. 
In the case of a 256 point spectrum analysis the minimal value of W is 
approximately 0.025, which means that the relative quantum size at the output 
of the butterfly can be 40 times the input. In this case the additive noise model i~ 
not true. 

3. Estimating the power density spectrum we are interested not only in 
the errors at the output of an FFT, but the errors of the spectrum points, too. 

Assuming that the signal and the noise at the output of the FFT are 
uncorrelated and if the output data points are Gaussians, the bias and the 
variance of the power spectrum can be calculated similarly to the case of the 
input quantization. Since the peak-to-rms ratio of the output is known a 
posteriori, the bias can be corrected. 

Effects of coefficient quantization 

Error is also caused by the finite word length representation of the sin/cos 
coefficients. There are rather few results dealing with this error [9J, [10J. The 
nature of coefficient quantization is inherently nonstatistical. The same inexact 
values are used repeatedly in the computation of one spectrum point, so 



HT-BASED SPECTRUM ANALYSIS 209 

accurate results from a stochastic analysis cannot be obtained. In spite of this 
fact, Oppenheim and Weinstein [10] have obtained some useful results by 
means of rough statistical analysis. The error due to the coefficient 
quantization is considered again as an uncorrelated noise with uniform 
distribution between plus and minus 2- b/2. 

They determine the ratio of the mean-square output noise to mean­
square output signal 

ms (coeff error) 

ms (signal) 
(15) 

The result, which was tested by simulation is useful to compare the effects of the 
various error sources. From this rough result it can be concluded that this error 
is negligible compared to round off errors of arithmetic. Kaiser and Knight [9] 
give a worst-case analysis. They survey the maximum absolute quantizing 
error in the sin/cos values. The measure ofthe ms output noise to the ms output 
signal they obtained is 

ms (coefferror) <42c;2M2. 2 
ms (signal) -

(16) 

Here c; is the max error of the coefficients. This result shows that the 
error-to-signal ratio is to increase as M2 compared to (15) where the rate of 
increase is only proportional to M. However, even if the latter expression is a 
good approximation of the error it is less by more than an order than the error 
caused by the arithmetic rounded, assumitlg that the number of input data 
points N:::; 4096. 

Effects of windowing 

In digital spectrum analysis only a time-limited segment of the input 
signal can be processed. The result of this truncation in the time domain is a 
modification of the spectrum. The time-limited signals can be obtained by 
multiplying the input signal with a rectangular window function: 

where 
O:::;t:::;T 

otherwise. 

(17) 

The effect of this multiplication is that the calculated Fourier transform is 
the convolution of the transform of the original signal and the transform of the 
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window function. The magnitude spectrum ofthe rectangular window function 
can be seen in Fig. 3. Its effects (widening the main lobe and the appearance of 
spurious sidelobes) can be modified by choosing different window functions. In 
digital processing the samples oJ the window function are used. The window 
samples, however, are represented by limited number of bits, so the parameters 
of the quantized window will be different from the parameters of the original 

IW(f)1 [dB] 

o-!-.;:----...-

Fig. 3 

one. The most important parameters of a window in the frequency domain are 
the mainlobe half width and the sidelobe level (Fig. 3). For spectrum analysis 
purposes window functions are needed which have low sidelobes combined 
with a not-too-wide mainlobe. 

The effects of quantization of the window samples are studied by Prabhu 
and Agra wal [11]. They determined the parameters of the most often applied 
windows using various word length samples. They concluded that using more 
then 8 bits is sufficient to closely approximate the unquantized case. It is well 
known that data (time) windows can be implemented either in the time domain 
or the frequency domain. The windows which can be represented by the general 
form 

j 2nin 
wN(n)= I aicos--

i=O N 
(18) 

where a i i = 0, 1, 2, ... j are constants and j is usually less than 4, can be 
implemented easily in the frequency domain. Their effect in the frequency 
domain is 

j 

Xw(k)= I a;[X(k+i)+X(k-i)] (19) 
i=O 

Because of the quantization errors, windowing in the time domain affects 
all the FFT computations, since these errors get embedded into the input data 
to FFT. The frequency domain implementation avoids these errors, since 
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windowing is realized after FFT computations. But frequency domain 
windowing needs extra multiplications with a i constants. These constants are 
represented also with finite word length. Temes and Babic [13J study this 
problem and give some results. They found window functions where the ai 

coefficients can be quantized without destroying the performance. 

Hardware design considerations 

Developing a hardware spectrum analyser the effects of quantization 
must be taken into consideration. The natural way to decrease these effects 
would be to use more-bit length data. This leads to higher cost and reduced 
operational speed. 

In the following, some simple suggestions are given to form a hardware 
implementation which may be less sensitive to quantization errors. 

1. The errors in a butterfly calculation can be reduced if instead of 
rounding after every multiplication, only the results of the whole butterfly are 
rounded. This means that in expression (11) the last term disappears. In this 
case the disadvantageous effect ofth~ multiplication by W« 1 is also cancelled. 
The cost of this modification is that the hardware will be a bit more 
complicated. The results of the b-bit multiplications must be summed without 
previous rounding; instead of a b-bit adder a 2b-bit adder must be used. 
Further, to avoid owerflows inside a butterfly calculation, the adder must be 
two-bit wider. The number of bits of the multiplier and the capacity of the data 
store, however, are not increased. 

2. In an FFT calculation the fewer stages of butterflies are needed the 
more the errors can be reduced. Applying higher radix FFT the number of 
butterfly iterations can be decreased without shortening the original data 
record. The application of higher radix algorithms decreases not only the 
number of iterations but also reduces the total of the required computations. 
However, as the base of the algorithm increases, the algorithm becomes 
involved which needs more sophisticated hardware. Thus radix 4 seems to be a 
good compromise. 

3. It is well known that the effect of quantization can be reduced by the 
application of dither [6]. Dithering means that a noise with proper parameters 
is added to the signal before quantization. Applying an independent noise which 

is uniformly distributed between - k ~ and + k ~ where q is the quantum size 

and k is an integer, the erroneous effects of the quantization can be cancelled. 
But if the amplitude interval of the dither does not exactly equal to k· q the 
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error reducing effect is worsening quickly. Thus, instead of a uniformly 
distributed dither it is common to use other noises (e.g. a Gaussian) which can 
be implemented easier. But these dithers do not cancel only reduce the errors. 

The studies mentioned before show that the most significant quantization 
error originates in the arithmetic rounding. To reduce the intermediate 
roundoff errors using the dithering technique, a simple hardware modification 
is suggested. It is easy to generate uniformly distributed random (or pseudo 
random) data sequences with an amplitude range which corresponds to the 
quantum size. Adding the subsequent samples of this digital dither signal to the 
result of a butterfly calculation before rounding, the quantization error can be 
reduced. But this dither also increases estimate variances. In Fig. 4 the 
hardware block scheme of the suggested butterfly calculator can be seen. 
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