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Summary

In this paper, the equivalent circuit of the dual mode ring resonators is derived which is in
good agreement with the experimental results. The temperature dependence of the ring
resonator resonance frequency is discussed.

Introduction

Ring resonators are used as resonators, antennas and other circuit
elements for microwave integrated circuits, e.g. in circulators, hybrid junctions,
filters, and directional filters. A ring resonator exhibits filtering properties,
depending on the arrangement of the coupling lines [1]. Ring resonator
resonance frequencies can be determined by using the H-wall-model theory
[2]. The resonant modes are TM_,,,, and the eigenvalues can be determined
from [2]:

Jn(Kn@)Nip(K 1y 0) = V(K D) N (K 2) = 0 (1)

where a, and b are the inner and outer radii of the ring resonatcr, J,(x) and
N,(x) are the Bessel’s functions of first and second kind of order m, the prime
denotes the derivatives with respect to the argument x.

The effect of the fringing fields is taken into account by describing ring
effective radii and effective permittivity, the former is only for microstrip ring-
resonator [3—5]
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where a g and b are the effective inner and outer radii, respectively, and h is
the thickness of the substrate. The resonance frequency f, is determined from
the eigenvalue K

K =2nf, /e (3)

u and ¢ are the permeability and permittivity of the substrate material.
To give an insight into the degenerate modes “"dualmode™, let us consider
the solution of Maxwell’s equations for the electromagnetic field components

[61.

E,=K?[A,J(Kr)+B;N_(Kr)] cosm®

H,= -2 rA 5 (Kr)+B,N,(Kr)] sin md

Hy= —jowe[A J(Kr)+ B, N (Kr)] cosm® (4)
And

E,=K?*[A,J (Kr)+ B,N_(Kr)] sin m®

H, = J‘Ufm [A,J(Kr)+B,N,(Kr)] cos m®

Hp= —jwe[A,J Kr+B,N, Kr]}sin m@ (5)

The field patterns of the first resonant dual-mode “TM, ,,” are shown in Fig. 1.

Mode splitting can be performed by using nonuniform ring and
symmetrically arranged coupling lines [6], [7] or by using uniform ring and
asymmetrically arranged coupling lines [6].

Another version for mode splitting using asymmetrically arranged
coupling lines was discussed in [8] which we will consider here.

A stripline of 50 ohm characteristic impedance is placed at a distance 0
from the ring resonator edge as shown in Fig. 2a. The electric and magnetic
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Fig. . Field patterns of the TM,, dual-mode
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Fig. 2. "a” Ring resonator coupled with stripline asymmetrical coupling, “b” Transmission
characteristic of the dual-mode ring-resonator, “¢” Cross-section of the dual-mode ring-
resonator with tuning element

fringing fields of the ring couple with the strip-line and dual-mode will be
excited. The dual-mode ring resonator in this case possesses a band-rejection
characteristic, while in [6, 7] it possesses a band-pass characteristic.

Figure 2b shows the insertion loss versus frequency of the dual-mode
ring resonator shown in Fig. 1a, where f,; and f;,, A, and A, are the resonance
frequencies and insertion losses at resonance of the dual mode Let us call the

electric and the magnetic coupled modes corresponding to the field patterns of
Fig. la and Fig. 1b, E-mode and H-mode, respectively.

Due to the difference of the coupling nature of the two modes, the
presence of the strip-line perturbs the resonance frequencies of the dual mode
“mode-splitting”, and f,, is always greater than f;,.

The resonance frequencies of the dual-mode ring resonator can be
perturbed by using tuning element in the form of a dielectric rod “Teflon rod”,
in which a thin copper wire is inserted so that its axis is prependicular to the
dielectric rode axis, and the copper wire axis is coplanar with the ring resonator
as shown in Fig. 2c. The angle « can be changed by rotating the dielectric rod,
and the change of x changes the resonance frequencies. When « is zero, the two
resonance frequencies are extremely splitted, f,, decreases, while f,, slightly
increases. When a = n/2 the two resonance frequencies are close to each other,
fy, decreases and f,,; slightly increases.
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In other words, when « is zero fy; <f,,, and when « is /2, it is possible
to make f,, <f,; depending on the thickness of the copper wire used in the
tuning element.

Equivalent circuit of the Individual Modes

If the ring is cut at ¢ =0 or ¢ =7, the azmithal ring current component of
the H-mode will be suppressed and the H-mode completely disappears, see Fig.
1b.

Similarly, a cut in the ring at @ = /2 or @ = 37/2 will suppress the E-mode
see Fig. la. ,

The equivalent circuits of the individual modes are shown in Fig. 3.

The normalized input admittance seen at the reference plane T —T for the
E-mode shown in Fig. 3a is given by

1
Yi =1+Y, =1+ =

i 1
Rll +] <(!)LII - (1)—(37)
1
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Fig. 3. Equivalent circuit of the individual modes “a” The E-coupled mode, “b” The H-coupled
mode
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where
w Wo1

Moy=— — ==

Wo )
Q,, is the unloaded quality factor of the E-modc and is given by
wo, L}
R}
B, is the coupling coefficient of the E-mode and is given by
1

er =

By= E?l‘
The normalized input admittance can be written
Y;n 17 G;n 1 +jBin 1
where
B
Gy =1+ Tt )
T TR Qo) (

’ — ﬁIQl’l rl (8)

" 14 Q)

~The frequency derivatives of the normalized input conductance and
normalized input susceptance are given by

G, 2 Qri#rs Woy 2
Sint 2 Qi 9
0w Woy F1Qn (1+(Qu 7)) * w ®)
0Bin (er’lrl) —1 <(1)01>2
s = r 5 1+ — 10)
cw Wy / Q I (er 7rl) + ])~ w (
The coefficients of the scattering matrix are given by ‘
B
Y., 2
prod - i _ 11
Sll SZZ 2+Y:-1 ﬁl ] ( )
1+ 3 +1Qr1Me
2 1+3Q. 7,
812=SZI=7+Y/ = ;JQ 1rs (12)
- o (1 + —2—1') +jQr1’7r1

For the H-mode equivalent circuit shown in Fig. 3 the normalized input
impedance seen at the reference plane T—T is given by
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1 5
Ziny=1+Z,=1+ =T -fj
. t 77‘.
G'2+J<wC,— ) Tl
° wl,
Where
_— W Wy
(5)02 w

Q,, is the unloaded quality factor of the H-mode and is given by

_ 00,C
Qr2 - G/2
f, is the coupling coefficient of the H-mode and is given by
1
37 =
/- Glz

The normalized input admittance seen at the reference plane T —T of the

H-mode is given by

3= = = Gz B
where

G .= 1+, 4(Qua2)”

T (14 B2+ (Qan,a)

(14)

(15)

The frequency derivatives of the normalized input conductance and

normalized input susceptance are given by

g:’lrz
0Gina _ 2 Qufy - (1+8,) <1+ (20_;>z>
bw  wey (1+,)? <1+ (Q.271:2)* )2 o
(1+8,)°

[

(Qr”? )
C‘}Binfl " 1 erﬂl Wo2 :
0w ey (148,)? (H—( ) )2 <l+<wo> )
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The coefficients of the scattering matrix are given by

By
2 2
Sn:Szz: 2+Z;2 = | [);2 . {13)
+ —2_ +JQr2’]r2
_ e ,l'l . 1+jQr2']r2
812—821u2+2;z“<1+/32> +1Q,21 "
_5‘ ha r2Hr2

The scattering matrix coefficients of the E-mode have the same form as
that of the H-mode, except that there is a negative sign in Sy;.

Thus, the insertion loss and the return loss of the two modes will have the
same form.

The insertion loss is given by

l (1+4)° +(Qr"7r')2>
A;=101log s =10log L 20
SEE ( [+ (Qun)? 20
/))i : 2
(3- "'L(Qri)]ri)h
R;=10log —— =10log>~ 21)
Nt

B;
2
where i=1, 2 for the E-mode and H-mode, respectively. At resonance, the

insertion loss is given by
Bi\?

Ai=1010g(1+?/ (22)

The voltage standing wave ratio at resonance is given by
=144 (23)
Thus, the coupling coefficient can be determined either from (22) or (23).

The bandwidths 4f, and Af; shown in Fig. 4 are given by

Mo 1 (B )
i, 'Qﬁ(“rZ) )

From (24) or (25) the value of Q,; can be calculated.
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tnsertion loss {dB}

Return toss {dB)

Fig. 4. The insertion and the return losses versus frequency for single mode “a” The insertion loss,
“b” The return loss

The power dissipated in the ring-resonator can be calculated as follows.
The incident power is given by

P,=aaf=|a,|?
The reflected power is given by
Pr=bbf=1S,,|%a,|?
The transmitted power to the load is given by
Paa=b,b3=|S;,]%(a,|?
The dissipated power in the resonator is given by
PlosszPin_Prcf‘"‘pload'——'ﬁ(1 “1811!2—'1821]2) ‘al‘z
The ratio of the power dissipated in the resonator to that transmitted to
the load is given by
Ploss - lwlsll‘z_ﬂlszltz
Pload IS21 ! 2

(26)
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Substituting (18) and (19) into (26), the ratio of the dissipated power in the
resonator to the load power for single resonant mode is given
Ploss — ﬁi
Pioag  14+(Qun)’

(27)

Equivalent circuit of the dual-mode

The dual-mode ring resonator shown in Fig. 2a is a symmetrical two port
lossy circuit. Its equivalent circuit may be represented by a symmetrical T-
section, symmetrical m-section or symmetrical lattice section.

Due to the interaction of the two modes, the lattice section, is excepted to
fit for the equivalent circuit representation. Furthermore, the representation by
T or = sections were found to be inadequate for the dual mode equivalent
circuit. The symmetrical lattice section shown in Fig. 5a represents the
equivalent circuit of the dual-mode ring resonator referred to the reference
plane T—T, where

2
’ = - (1+ T ’r 28)
Y” [gl JQ 1] 1) (

Y;, is given in (6) and

Zr — r2 —_— [32
= T 50w
-~ "(1 +JQr2’7r2)

Z., is given in (13).

As seen from the equivalent circuit shown in Fig. 3a, when f, =0 or
B,=0, the equivalent circuit will be reduced to one of the equivalent circuits
shown in Fig. 3.

The equivalent circuit shown in Fig. 5a can be reduced to the symmetrical
T-section shown in Fig. 4b [9]. Taking half section of the T-section, the eigen-
values of the scattering matrix are given by [10].

Z,l - 1
Sv«= T
Zi+1
. Z,—1 N
2 Zh+1 (29)
The scattering matrix coefficients are given by [10]
S, —S, Z\ -7,
S12=8;=—"—2%= e (30)

2 (Zy+1)(Z,+1)
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Fig. 5. Equivalent circuit of the dual-mode ring resonator “a” The lattice section equivalent
circuit, "b” Iis reduced T section equivalent circuit

S, +8, 72, —1
S :S')'): ! T 1 2 3‘1
e I v Y (31)

The insertion loss A, and the return loss R of the dual-mode ring
resonator are given by

1 v
A=101lo _ (32)
SEE

R=10log —— (33)

1S 1%
Substituting (28—31) into (32) and (33), one gets

NZ4+N2

A=10lo 34

ng D2 (34)
2 2

R=10log 3t Na (35)

D D2
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where
. B
Ny =1-0Q, Q211172 — ﬁ14 s
N, =Q 77, +Qpatrn
/))1 _/32
Ny= 5
y
] /ZQrI’]rl [1 Qr?_’]rl
B By BB
D1: T‘,)‘ _i""a h / riNr2fritle2

D= (142 Quat <1 + 5 Qun

The insertion loss is infinite transmission zero, as seen from (30), and can
be recognized from Fig. 5b when:

Z,—2Z5=0 (36)

The solution of (36) implies that

N
er'lrlO:_QrzanO:i /'[14/3.‘

—1 (37)
where 1,, an 1, are the values of 5., and #,, at the frequency of transmission
ZeT0.

It is seen from (37) that the frequency of transmission zero fy, must lay
between f, and {,,.

The normalized input admittance at the frequency of transmission zero
can be calculated referring to Fig. 5b and is given by

2
Y;n 00~ 7)::_ (1 +jQr2']r20) (38'{1)
Y;n OO::G;nOO +jB;n00 (38‘b)

From the measured input admittance at the frequency of transmission
zero, it is possible to determine the coupling coefficients using (37) and (38) and
are given by

2
ﬁ:’. == r—' 39'3'
Gin 00 ( )
2 ’ 2
Bi= =Yool (39-b)

in00
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The presence of the cuts shown in Fig. 3, suppressing one of the resonant
modes affects the resonance frequency of the other mode. Furthermore, the
interaction of the two modes affects also the resonance frequency of each of the
two modes.

The deviations in the resonance frequencies due to mode interaction were
calculated and were found to be smaller than 0.1%, and will be neglected in the
following analysis.

Theoretical and experimental resuits

Dual mode ring resonator, with rings having fixed inner and outer radii a
=2.3 mm, b=3.6 mm with different distances between the strip-line and the
ring resonator edges 0 =0.1—0.7 mm were fabricated on a 1.56 mm thickness
polyguide substrate e, =2.32.

The resonance {requency {, of isolated weakly coupled.ring using (1), (2)
and (3) was calculated and was found to be 10.88 GHz.

The transmission characteristics of these filters were measured by HP
8755 S frequency response test set. Without tuning element, the variation of the
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Fig. 6. “a” variation of the resonance frequencies fy, and f,, versus 8, “b” variation of the
insertion losses A, and A, versus &



DUAL-MODE RING-RESONATOR 263

resonance frequencies f,; and f;, versus d is shown in Fig. 6a. Fig. 6b shows the
variation of the insertion loss A; and A, at fy; and f,,, respectively versus 9.
The measured insertion and return loss versus frequency is shown in Fig,
7a. From (22), f, and f, were calculated, then the insertion losses were
calculated using (34) and (35) and are shown in Fig. 7a for comparison. Also the
variation of the susceptance slope versus frequency is shown in Fig. 7b.

fo fo2
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1 1
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Fig. 7. *a” variation of the insertion and return losses of the dual mode ring resonator versus
frequency, “b” variation of the input susceptance slope versus frequency



264 G. ABEDEL-RAHIEM—L. JACHIMOVITS

A tuning element was used to obtain maximum insertion loss trans-
mission zero, where fyo=f,, =f,,. The variation of the insertion and return
losses are shown in Fig. 8.

The input impedance at the frequency of transmission zero was measured
and was transformed to the reference plane T—T, the effect of the SMA
launcher was taken into account [11]. The calculated coupling coefficients
using (39) are in good agreement with that calculated for the two individual
modes equation (22).

The calculated insertion and return losses using (34) and (35) are shown in
Fig. 8 for comparison.
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Fig.8. Variation of the insertion and return losses of the dual-mode ring resonator tuned to show
transmission zero versus frequency
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For single resonant mode, the coupling coefficients can be calculated
from (22) or from (23).
The two values were found to be in good agreement.

Temperature dependence of the ring-resonator
The resonance frequency of the ring resonator is obtained from the eigen-
value given in (3)
[ K.n(a, b)
o2ny LeE

150K (2, b)

ff= ———— (40)
s \/:,
The resonance frequency of the first resonant mode is given by
f = }—~——~50K‘f,(f’ b) (41)
/&
The ring-resonator temperature coefficient P, is given by
p _bdf 170 d5r+5fr da +(Ef,_db
"Tf.dT  f, \G¢ dT ' 0a dT ' b dT
Pr:prlm}-PrZ (42)
where
1 of. de,
P,= [ Ze dT (43-a)
1 ¢ ¢ %
=L of. da 1 df db (43-)

f 7a dT "I ab dT

Let us begin with P, differentiating (41) with respect to g and
substituting in (43-a), then

1 de, (44)

P, =—
T 9 dT

But ¢(T) is given by [12]
e(T)=¢(To) [1 +7(T—T,)] (45)
Thus substituting (45) into (44)

3 Periodica Polytechnica El. 28/4
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To determine P,,, consider the characteristic equation (1)
F(a, b)=J{(K;2)N (K ;b)—N(K,,;a)J}(K;,b) (47
The variation in a and b cause a variation in K, and consequently a

variation in f,.
Differentiating (47) with respect to

! 1 ! (}K
[I(K 3 )N (K b) — NY(K, )5 (K 4 b)) (K“ +a—(§;}) -

oK , , "
=b—(—{él”l‘ [NY(Ka)J{(K;,b)—J)(K;a)NY(K,,b)]

which can be simply written in the form:

oF
1 0Ky, da t of
K,, ¢a JoF oF f oda . “8)
a—— +b——
da db

Similarly differentiating with respect to b and after simple manipulation
one gets

oF

1 0Ky, b 1

K,, b  9F _0F f db (49)
a———+b—;—
da b

But
a(T)=a(To) [1 +{T—T,)]
B(T)=b(To) [1+{(T—To)] (50)

where ( is the effective coefficient of thermal expansion of the ring resonator.
Substituting (48), (49), and (50) into (43-b) we get

P,=—{ (51)

But { depends on the coefficients of thermal expansion and the modulus
of elasticity of the copper and the substrate material.

If {. and {, are the coefficients of thermal expansions of copper and the
polyguide, respectively, and E_ and E, are the modulus of elasticity of copper
and the polyguide respectively, then referring to the model shown in Fig. 9, one
can get the effective coefficient of thermal expansion as follows
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1 + .t._ E E
hE,g
(=1, Lt E-c— (52)
h E,
Substituting (46) and (51) into (42) then the value of P, is given by
-7 _
P=—2 L (53)
w ~
Ec. & F—_—*‘_"‘Il 4
r‘}.'.-:E.'g-'.g'«_:'.f:-‘.f:cf:-':‘:~‘:'.~:.~:-:-:+:-‘.-1::er';:a-ﬂ%
7 A

Fig. 9. Cross-section in a polyguide

From (53), the temperature dependence of the resonance frequency of the
ring resonator is similar to that of the rectangular resonator. The value of P, for
the polyguide used is [12]

P.,=112 ppm/°C

Conclusion

The equivalent circuit of the dual mode ring resonator has been derived,
its parameters were presented. The equivalent circuit interpreted the sharp
attenuation characteristic of the dual mode ring resonator. The measured
insertion and return losses were found to be in good agreement with the
calculated values. The power dissipated in the ring resonator and the
temperature dependence of the ring resonator resonance frequency were
derived.
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