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Summary 

A numerical procedure based on the Bubnov-Galerkin method is presented for the 
approximate solution of a nonlinear stationary magnetic field problem with inhomogeneous 
boundary conditions. Neumann-type boundary conditions are included in the operator 
equation describing the boundary value problem. Their incorporation is presented both with the 
aid of a special functional Hilbert space and by the use of generalized functions. The Dirichlet­
type boundary conditions are reduced to ones of Neumann type. 

1. Introduction 

The Galerkin-type projection methods are widely employed for the 
approximate solution of the differential equations of mathematical physics [6, 
7, 8, 9, 10]. These methods have also been applied to electromagnetic field 
problems both in global element [11J and finite element [3, 13J procedures. 
Nonlinear differential equations are also readily treated by the methods. 
However, Galerkin-like procedures have only been applied to problems with 
homogeneous boundary conditions (or to ones reduced to such problems), or 
they have sometimes been extended to inhomogeneous boundary conditions 
without sufficient explanation. 

The aim of this paper is to extend the Bubnov-Galerkin method with 
global approximation to problems with inhomogeneous boundary conditions. 
Special effort has been made to ensure that the approximating functions don't 
have to satisfy any boundary conditions. The procedure is presented for 
nonlinear stationary magnetic field problems. The reason for selecting a 
nonlinear case is that such problems cannot be reduced to ones with 
homogeneous boundary conditions by constructing functions satisfying the 
inhomogeneous conditions. A stationary problem has been chosen where the 
Bubnov-Galerkin method coincides with the Ritz's process applied to the 
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minimum of a functional [1]. It must be stressed, however, that the 
convergence of the Bubnov-Galerkin method is assured for a broader class of 
problems, and the results of this paper can easily be extended to non-stationary 
case. 

2. The Bubnov-Galerkin method 

Consider the operator equation 

P(u)- 1=0 (1) 

where P is an operator, in general nonlinear, acting in a Hilbert space H. The 
range of definition of P is D(P), and the solution Uo E D(P) of (1) is sought, if 
1 EH is kown. Under very loose conditions on P (e.g. D(P) is a linear set dense 
in H, and P can be written as 

P=A+K (2) 

with K bounded and the inverse of A completely continuous), the following 
Bubnov-Galerkin process is convergent [6, 7, 10]. 

Let an algebraic base {<Pi} c D(P) be chosen in H, and the approximate 
solution of (1) be sought as 

(3) 

with Qk (k= 1, 2, ... , n) being numerical coefficients. These latter are deter­
mined from the condition that after the substitution of(3) into (1) the left-hand 
side of (1) is orthogonal to the elements CPl' CP2' ... , CPn: 

i= 1, 2, ... , n (4) 

where ( , ) denotes the scalar product in H. 
The solution of the set of algebraic equations (4) yields the coefficients Qk 

which, in turn, give an approximate solution of the form (3). If n is increased, 
these latter tend to the exact solution Uo of (1). If e.g. the Frechet derivative A' of 
the operator A in (2) exists and is positive definite, the convergence takes place 
in the energy norm of A' [9]. 
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3. Formulation of the electromagnetic field problem 

The stationary magnetic field in ferromagnetic medium is obtained by the 
solution of the Maxwell equations 

curl H=J, 

div B=O, 

H=v(IBI)B. 

(5) 

(6) 

(7) 

H is the magnetic field intensity, B is the magnetic flux density and J is the 
current density which is assumed to be given. v(IBI) is the reluctivity of the 
medium, and with the hystheresis neglected it is a one-to-one function of the 
absolute value of B. 

On satifying (6) by the introduction of the vector potential A: 

B=curlA, (8) 

(5) and (7) yield the following differential equation: 

curl [v(lcurl AI) curl A] =J . (9) 

To determine the stationary magnetic field in a bounded region Q, 

appropriate boundary conditions are necessary. Two types of boundary 
conditions are considered. 

In one case, the tangential component of the magnetic field intensity is 
known on a part S 1 of the boundary: 

H x n I s 1 = v( I curl A I) curl A x n I s 1 = h (10) 

where h is known, n is the normal unit vector of S 1 and the left-hand side of(10) 
is the tangential component ofH rotated in the tangential plane by 90 degrees. 
This will be called Neumann boundary condition. 

The other type of 'boundary conditions is obtained, if the normal 
component of magnetic flux density is given on some other part S2 of the 
boundary. This boundary condition can be formulated for the vector potential 
as 

nxAls,=a (11) 

where a is known and the left-hand side of (11) is the tangential component of 
the vector potential rotated in the tangential plane by 90 degrees. This will be 
called Dirichlet boundary cG.1dition. 

It can be shown that if the union of S 1 and S 2 is the boundary of the region 
Q, the solution in Q of the differential equation (9) with the boundary 
conditions (10) and (11) is unique for the magnetic flux density [1]. 

Our aim is to present the application of the Bubnov-Galerkin method to 
the solution of the boundary value problem (9), (10), (11). 
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4. Treatment of the Neumann boundary condition 

4.1. Statement of the problem 

Initially, it will be presumed that S 2 =~, i.e. the tangential component of 
the magnetic field intensity is given on the whole of the boundary. Accordingly, 
the differential equation (9): 

curl [v(lcurl AI) curl AJ =J in Q (9a) 

has to be solved in a bounded region Q with the boundary condition 

v(lcurl AI) curl A x n=h on S (lOa) 

where S is the boundary of Q. 

In order to apply the Bubnov-Galerkin method, an operator equation 
equivalent to the boundary value problem has to be formulated. This means 
that both the differential equation and the boundary condition have to be 
included in the equation. 

A usual way of application in linear case is to reduce the problem to one 
with homogeneous boundary conditions by the construction of functions 
satisfying the inhomogeneous conditions [8]. (This is usually not an easy task, 
especially at involved geometrical layouts, but a possibility is found in [12J, 
and its electrodynamic application in [5].) In case of homogeneous boundary 
conditions the range of definition of the operator can be chosen as the set of 
sufficiently differentiable functions satisfying the boundary conditions. The 
operator-equation is then the differential equation. 

In nonlinear case, this approach is not possible since superposition is not 
valid. An alternative possibility is to allow the range of definition to contain all 
functions with sufficient derivatives, and to include the boundary conditions in 
the operator equation. This inclusion will first be carried out by the 
introduction of a suitable function-space, and then the concept of generalized 
functions (distributions) will be employed. 

4.2. Formulation in a functional H ilbert space 

In order to carry out the above inclusion let us define a Hilbert space as 
follows. The elements of H are pairs of vector functions of which one is square 
integrable in Q and the other is square integrable in S the boundary of Q: 

(12) 
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L2(Q) and L2(S) are the Hilbert spaces ofthe vector functions square integrable 
in Q and S, respectively. The scalar product in H is defined as 

(13) 

It is shown in Appendix A that H is in fact a Hilbert space. Evidently, if u is a 
function in L2(Q), it is also an element of H. 

The operator of the boundary value problem (9a), (lOa) is defined in H. Its 
range of definition D(P) is formed by the vector functions twice differentiable in 
Q and once in S. This is a linear set dense in H. The operator equation is: 

P(A) = {curl [v(lcurl AI) curl AJ, v(lcurl AI) curl A x nl s} = 

{J, h} . (14) 

It can easily be proved that the Frechet derivative of P(A) exists and is positive 
[lJ which is sufficient for the convergence of the Bubnov-Galerkin process [9]. 
The approximate solution of (14) is sought as 

(15) 

where <Pk are chosen from an entire set in D(P). The Galerkin equation 
corresponding to (4) can be written on the basis of (13) and (14). Using the 
Gauss theorem it is of the form: 

J v( I curl An I) curl An curl <Pi dQ = J J(j)i dQ + ,hq>i dS , 
D D S 

i = 1, 2, ... , n. (16) 

This is a system of nonlinear algebraic equations for the coefficients ak (k 
= 1,2, ... , n). Its solution yields an approximation of the form (15) for the 
function solving the boundary value problem. The sequence of these 
Approximations converges to the exact solution in the energy norm of the 
Frechet derivative of P. This means that 

J I curl An-curl Aol2 dQ~O 
D 

where Ao denotes the solution of the boundary value problem [1]. 

(17) 

It is noted that the result (16) can be obtained by the application of the 
Ritz process to the minimum problem of an appropriate energy functional [1]. 
However, the Bubnov-Galerkin method lends itself more easily to gen­
eralization since its convergence is assured for a broader class of problems [7, 
10]. 
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4.3. Formulation with the aid of generalized functions 

In the following, an alternative formulation of the operator equation 
corresponding to the boundary value problem (9a), (lOa) will be presented. To 
this end, we introduce two generalized functions (distributions). One of them is 
denoted by e g and defined as 

<eg, cp) = S cp dQ, cp E D. (18) 
g 

D is the set of functions with an infinite number of derivatives and compact 
support in the three-dimensional Euc1idean space, < e g, cp) denotes the result 
of the application of the functional e g to the function cp. e g can be identified 
with the function which equals 1 in Q and vanishes outside it. The other 
distribution denoted by 6s is defined by 

cp E D. (19) 

6s is a Dirac distribution concentrated on the surface s. It is closely related to 
the derivatives of e g, namely 

grad e g - n6s (20) 

where n is the outer normal unit vector of S. The rules governing the operations 
with distributions are summarized in Appendix B. 

The boundary value problem is now formulated as 

n( A) =. e g curl [vU curl A I) curl A] + 
+ 6s v(lcurl AI) curl A x n= egJ + 6sh. (21) 

This is clearly equivalent to (9a), (lOa). The operator II(A) on the left-hand side 
of (21) can also be written as (cf. (20) and Appendix B): 

II(A)=.curl [egv(lcurl AI) cur] A]. (22) 

This can be interpreted as the curl of a function which coincides with the 
magnetic field intensity in Q and vanishes outside it. The right-hand side of(21) 
is seen as the sum of the volume current density J and a surface current density 
h. Therefore, (21) is a generalization of the Maxwell equation (5) for the case 
when the magnetic field intensity is not continuous along a surface. 

The operator II defined in (21) acts from the space D to its dual space D' 
consisting of functionals identified with distributions. For this case, a natural 
formulation of the Bubnov-Galerkin method is the following. 

The approximate solution of (21) is sought in the form (15), but with the 
functions <f>k chosen from D. The unknown coefficients in (15) are now 
determined from the condition that the functionals on the two sides of (21) yield 
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the same result on application to the functions <Pi (i 1,2, ... , n) after (15) has 
been substituted: 

( en curl [v( I curl An I) curl An], <p;) + (c5s v( I curl An I) curl An X 11, <Pi) = 

(enJ,<p)+(c5sh,<p;), i=1,2, ... ,n. (23) 

Using (18), (19) and the Gauss theorem, (23) yields the same set of algebraic 
equations as (16). 

This result is significant, bacause it permits the use of the Dirac function 
c5s defined in (19) to describe inhomogeneous Neumann boundary conditions 
in a form easily added to the differential equation. This makes the direct 
application of the Bubnov-Galerkin process to the modified differential 
equation possible. 

5. Treatment of the Dirichlet boundary condition 

Let us now return to the boundary value problem (9), (10), (11). The 
Dirichlet boundary condition (11) cannot directly be included in the operator 
equation. An alternative treatment is presented now [1, 2]. 

Let a set of functions {~;} be chosen on S 2 the surface with Dirichlet 
boundary condition prescribed on it. Let ;i be of tangential direction on the 
surface, and such functions will be called tangential vector functions. The 
function set g;} should be entire in L2 sense in the space of tangential vector 
functions on S2' Hence, the tangential component of the field intensity rotated 
by 90 degrees can be written on S 2 as 

CL 

Hxnls2=v(lcurIAI)curlAxnls2 = I j·Aj· 
j= 1 

(24) 

An approximation of the left-hand side of (24) is derived by using a partial sum 
of the infinite sum: 

m 

v(lcurl AI) curl A x n1 S2 :::::: I j·Aj· 
j= 1 

(25) 

Now, the approximate problem (9), (10), (25) is the same as (9a), (lOa) with the 
exception that a sum with unknown coefficients j'j appears in (25) instead of the 
known function h. Accordingly, the Galerkin system of algebraic equations 
corresponding to (16) is 

m 

S v( I curl An I) curl An curl <Pi dQ - I j'j S ~j<Pi dS = 
n j= 1 S2 

= S J<Pi dQ + S h<Pi dS , i= 1, 2, ... , n. (16a) 
n SI 
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An here is an approximation of the form (15) of the vector potential. This can be 
obtained by the solution of (16a). The function thus derived approximately 
satisfies (9) and (10), and includes the coefficients }'j U = 1, 2, ... , m) as free 
parameters. To select the parameters }'j and to obtain a solution satisfying (11) 
as well as possible, the function (n x Anl52 -a) is chosen to be orthogonal on S2 
in L2 sense to the functions n x /;j U = 1,2, ... , m): 

J (0 x An-a)(n x ;j) dS=O, (26) 
52 

or in an equivalent form: 

S An/;j dS = S (/;j x a) dS , j=I,2, .. . ,m. (26a) 
52 52 

This is again an application of the Galerkin method. 
It m is chosen to fulfil the inequality 

m<n (27) 

the solution of the algebraic equations (16a), (26a) for the coefficients ak (k 
= 1, 2, ... , n) and }'j U= 1, 2, ... , m) yields an approximation (15) which 
approximately satisfies (9), (10) and (11). 

Appendix A 

It is shown in the following that the function-set defined in (12) is a real 
Hilbert space with the scalar product (13). It is to be shown that H is linear, (13) 
is in fact a scalar product with the norm generated by it satisfying Schwarz's 
inequality, and that H is entire in the sense of the norm defined in accordance 
with (13). 

1. The linearity of H is evident if multiplication by numbers and addition 
is defined in the natural way. 

2. The linearity and commutativity of the scalar product (13) is evident. 
Also, if 

({ u1, U2}, {u1 , u2}) = S 1 ul 12 dQ + ~ lu212 dS = 0, 
Q 5 

then {u l , u2} =~ where \0 is the zero element of H i.e. the pair formed by the zero 
elements of L2(Q) and L 2(S) . 

3. To show Schwarz's inequality, let ( , band ( , )5 denote the scalar 
products in L2(Q) and L2(S), With this: 
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1({ul , U2}, {VI' v2})1 2=I(ul , v1b1 2+ l(u2, "2)sI2+ 
+21(ul , vI )f.!II(u2, V2hl ~ 

~ lIulllbllvlllb + Ilu211~llv211~ + 21IUlllf.!IIVlllf.!IIU21Isllv2I1s~ 

~ !Iulllbllvlllb + Ilu211~llv211~ + Ilulllbllv211~ + Ilu211~llvlllb= 
(1Iulllb+llu211~)(llvlllb+ Ilv211~) II{ul , u2}1I 211{vl , v2}1I 2. 

85 

This is the Schwarz inequality. The same in L2(Q) and in L2(S) as well as the 
inequality between the arithmetic and geometric means has been used here. 

4. H is entire, because it follows from 

lI{uln-Ulm, U2n -u2m}ll2 = Iluln-ulmllb+ Ilu2n-U2mll~ --jo0 

that 
and 

and this implies that the sequence {u ln } is convergent in L2(Q) and U2n in L2(S), 
thus by the definition of H, {{ Uln, u2n }} is convergent in H. 

Appendix B 

Some rules of operations on distributions are summarized in the 
following. 

If a distribution T can be identified with a locally integrable function, 
then 

< T, q; > = S T q; dx , T E D', q; E D. 
R3 

It TI and T2 are two distributions, their sum is defined by 

If a E ex and T E D', their product is defined by 

<aT, q; > = < T, aq; >, q; E D . 

The partial derivative of a distribution with regard to the variable Xl is 
defined as 
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The above can be extended to vector distributions in a natural way. The 
definitions of the operations grad, div and curl for distributions are the 
following: 

(gradT,q»=-(T,divq», T ED', q>ED. 

(divT,cp)=-(T,gradcp), TED', cpED. 

(curl T, q» = (T, curl q», T E D', q> E D. 

A more detailed summary can be found e.g. in [4]. 
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