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Summary

The paper studies the problem of triangular decoupling through Ls.v.[. using frequency-
domain approaches. The interactor concept and the matrix fraction right description form are
used to resolve the questions concerned with this problem and in turn an algorithm is given for
triangularization of any right invertible proper system by using L.s.v.{f. alone. The paper describes
the use of triangular decoupling as an intermediate step for exact decoupling of systems having
unstable decoupling zeros.

1. Introduction

The triangular decoupling concept was introduced by Morse and
Wonham [3]. They used the geometric approach to solve the triangular
decoupling problem (TDP) by tie use of linear state variable feedback (Ls.v.f)
control law. Algebraically the problem using the time-domain approach was
already attacked by many authors. Wang [6], was the first who proved that the
necessary and sufficient conditions for the existence of Ls.v.{. laws for triangular
decoupling are equivalent to the conditions of invertibility, i.e., an invertible
system can always be triangularized by using Ls.v.f. alone. More recently,
alternative forms and generalization were given by Furta and Kamiyam [2],
and Descusse and Lizarzaburu [17, respectively. It is important to note that the
time-domain approach is based mainly upon the Silverman’s inversion
algorithm [4], and Silverman-Payne structure algorithm [5].

In the frequency-domain, Wolovich [ 7], suggested an algorithm for TDP
by using L.s.v.f. In our opinon a more theoretical material is needed to modify
and satisfy this algorithm. Actually we shall use the interactor idea, which is the
frequency-domain version of Silverman work used to resolve TDP in the time-
domain, for such a purpose.

In § 2 a background necessary material is given. The main results are
given as Theorem I, Theorem 2, and Algorithm 1 in § 3. These results will be
used in § 4 to construct a new and more efficient algorithm for the diagonal
decoupling of systems having unobservable-unstable modes.

* Assiut University Egypt.
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2. Preliminaries

Definition 1. Triangular decoupling through Ls.v.f. A p x m, proper, right-
invertible system T(s), expressed in its minimal controllable form,

T(s)=R(s) P (s) (2.1

where R(s) and P(s) are RRP; and P(s) column proper, is said to be triangularly
decoupled by Ls.v.f, if there exists a Ls.v.f. control law,

U(s)=F(s)X(s)+ GV(s) (2.2)
such that the C.L.S,,
T(s)=R(s) [P(s)—F(s)]'G (2.3)
is in lower-left triangular form with
éc,[P(s)]=dc;[P(s)~F(s)], (2.4a)
and G I [P(s)]=T.[G Y(P(s)—F(s))] (2.4b)

Let us consider the invertible case (p=m). By making use of Wang’s
theorem [6], there is a pair {F(s), G} which satisfies equation (2.3), i.e.,

(fu(s)
0 ... 0
P11(s)
Fa1(s)  Faa(s) o 0
T(s)= | P21(s)  D22(8) (2.5)
le(s) FmZ (S) fmm(s)
bﬁml(s) ﬁmz(s) o ﬁmm(5)~

It is always possible to put equation (2.5) in the form,
T(s)=RE) P (s) (2.6a)
where R(s) and P(s) are RRP and both are triangular, i.e.,

fas) O ... 0

F F e 0
Rep=| Y 2 . (260

s Fma(®) o )
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P11(s) 0 0
Pas p - 0 ‘
p(s)= Pz.(S) P27:(S) . (2.60)
B ﬁml(s) ﬁmZ(S) e ﬁmm(s)_

The representation (2.6) is not unique and our study will include the
following questions:
(i) What is the relation between R(s) and R(s), and between P(s) and P(s)?
(i) Are there other common (invariant) properties than those given by
equation (2.4)?
(iii) Is it possible to have P(s) in column or row proper form?
The following lemmas are needed to resolve questions:

Lemma 1

“If P(s) is an m x m column (row) proper invertible polynomial matrix,
with column (row) indices doc;, j=1,2,...,m(0F,i=1,2,...,m), then its
adjugate matrix B(s) is row (column) proper polynomial matrix with row
(column) indices ér,(0¢;) given by

51‘,-:72-—86’,», vi (

.
OC; .
m
- -~
éc; n= )y 0r ).

n==

INGE

i=t
Lemma 2

“If T(s)=R(s) P~ }(s) is an p x m transfer function matrix with P(s) m x m
invertible, column proper polynomial matrix and éc;[R(s)] £ dc;[P(s)],¥j, then
T(s) is proper.”

Lemma 3 (Wolovich and Falb [8])

“For any p x m proper rational transfer function matrix T(s), there is a
unique, nonsingular p x p lower-left triangular matrix &y, of the form,

Ex(s)=Hy(s)<s, .., 877
[ 1 0
h21(3) 1

where,

Hy(s)=

_‘hpl(s) hpz(s) 1
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and h;;(s) is divisible by s (or zero) such that:

lim &(s) T{(s)=Ky, with Ky of full rank p.”

S

Definition 2. The interactor &;(s) and { f;}sare called the interactor and the
interactor indices respectively.

Lemma 4

“Let R(s) and P(s) be two m x m, invertible polynomial matrices and
lim R(s) P~ ! =K with K nonsingular. Then R(s) is column proper and has the
ss';r;;e column indices as P(s) if and only if P(s) is column proper.”
Proof

To prove the “if” statement. assume that P(s) is column proper and ¢c; is
the j-th column index. The inverse of P(s) is:

P 1(s)=B(s)-:—AI;s 2.7

where 4(s)=|P(s)] and of degree n= 3 &c;, B(s) is the adjugate of P(s). By
=1

using Lemma I, B(s) can be written in the form:

B(s)=5,(5)B, +5,_,(5)By_, + ...+ B, (2.8)
where h=max {¢r;}, and {2.9a)
Sioi9)=¢Tn s (2.9b)

and B, is a nonsingular matrix, and the elements in the B, corresponding to the
negative power of s are zero.
Now, express R(s) according to its column degrees 0¢;,

Rs)=RS,(5)+... + &, (2.10)

where 8§, (s)=(s 1, ..., 5%

Since, lim R(s)P ™ !(s)=K (K nonsingular), (2.11)
then, (lim R(s)P~ 1(s)) L=KL= lim (R(s)P~(s)L), (2.12)
for any nonsingular scalar matrix L. By postmultiplying equation (2.11) by B, !
we have, 1

lim —— {R;§,(5)S,(s) + (R,_ 1 (5)5,- 1 (5) By, +

s~ AP(s)

1RS458, ,(5)B,_)B; '+ ...} =KB; ! (2.13)



TRIANGULAR DECOUPLING THROUGH VARIABLE FEEDBACK 99

Let, . )
Sh+1_i(5)=<sam+"—ﬁcl—i, . .’Sﬁcm+n—6cm—i> (214)

Since the limit is finite, then
lim <§1;1' R,S;H,,(S)) =KB]|—1 (2.15)

Sy +1(s)

From Sylvester’s inequality, R, and ==~ are of rank m, ie., R, is
s

nonsingular and 6¢;=dc;; ¥;, and this means that R(s) is column proper and
has the same column indices as P(s).

To prove the “only if” statement we can use the same procedure for the
assumption that R(s) is column proper to prove that P(s) will also be column

proper and has the same column indices as R(s).
‘ Q.ED.

3. Triangularization: theorem and algorithm

In this section we will give the theoretical base for triangularization as
Theorem 2, and an algorithm to construct a ls.v.f. compensator for such a
purpose. The following theorem will also be used.

Theorem 1

“For every right invertible plant transfer function matrix, the interactor is
invariant under Ls.v.f. control law.”

Proof

Considera p x m O.L.S. as given by equation (2.1). The C.L.S. under Ls.v.f.
is given by:

Tr 6(s)=RE)[P(s)~F(s)]'G 3.1

with the same conditions given by equation (2.4). If &(s) and &(s) are the
interactors of T(s) and T g(s) respectively we want to prove that &(s)=E(s).
We begin first with the special case p=m. Let,

&(s)=H(s)<s" (3.2a)

&s)=H(s) 7 (3.2b)

From Lemma 3 and Lemma 4, &(s)R(s) and &(s)R(s) are column proper with,
oc;[E(S)R(s)] = c;[P(s)] (3.33)

oc;[E(sIR(s)] = 8c;[P(s)—F(s)] = Oc;[P(s)] (3.3b)
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From Lemmas (4) and (2), it follows that

[E(sIR(5)] [EOR(E)] ™ =H(s) (X THH™X(s), (3.42)
[E(sIR(s)] [ES)R(S)] " = F(s) 7 HH1(s), (3.4b)

are both proper. It is easy to prove, by using equation (3.4) and the special form
of H(s) and H(s), that,

fi=fi Vi (3.5)

Now, both H(s) and H(s) are unimodular, lower-left, triangular matrices
with diagonal entries “1”. Hence H(s)=H(s)=U(s) is unimodular, proper and

satisfies lim U(s)=L, with L nonsingular. Since each h;(s) and h;;(s) are

S0

divisible by s (or zero), therefore U(s)=1I and

H(s)=H(s) (3.6)
It is evident from equations (3.5) and (3.6) that:

&(s)=&(s) (3.7)

If p# m, but T(s) is right invertible, then R(s) is of full rank p and there are
“m—p” TOW Vectors, r,. {(s), . . ., F,,(s) (With polynomial entries) such that the
extended numerator polynomial,

Re(s)= | r,+1(5) (3.8)

is nonsingular .and T(s}=R(s)P~!(s) is proper. From Lemma 3 there is a
unique interactor & (s) having the form,

ON

Els)= : 3.9)

m-—p,p. m—p,m—p
such that lim §.(s)T(s)=K.. From the previous proof of the special case p=m,

s

E(s) is invariant under ls.v.f. and hence &(s) is also invariant.

Q.ED.
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Hint. This proof is an almost word by word repetition of the one used by
Wolovich and Falb [8], to establish the uniqueness and existence of &(s) for
pF#Em.

Theorem 2

“Let, T(s)=R(s)P ~ !(s) be a p x m right invertible plant transfer function
matrix, R(s) and P(s) RRP, and T(s) be a C.L.S., triangularized by the Ls.v.f. . pair
{F(s), G}. For all the MFRD possibilities ofT(s) as a triangular pair lR( ). P(s)},
the degrees of the diagonal entries of {R(s), P(s)} denoted by {k;,d;} are fixed
and given by the relations:

k.=k..

a‘:k,+ﬂ. izl,...,p

where, {k;} =degrees of the diagonal entries of any lower-left, triangular form of
R(s), and { f;} are the interactor indices of T{(s).”

Proof

We assume that R(s) is in lower-left, triangular form. It is well-known,
Wolovich [7], that R(s) (in equation (2.3)) may be varied through Ls.v.f. within
only a unimodular factor, i.e., ¢]R(s)] and the roots of | R(s)| are invariant under
L.s.v.f. Hence the effect of a Ls.v.f. on R(s) can be described by some unimodular
matrix Uj(s),

T(s)=R(s) [P(s)U; *(s)] ! (3.10a)
=R(s)U;(s)P ™ (s) (3.10b)
=R(s)P~(s) (3.10c)

Let T(s)=R(s)P ™ '(s) be a MFRD of T(s) as a triangular pair {R(s), P(s)},

then
k2 5{f,.,.(s)} (3.11a)
d;26{pu(s)). (3.11b)

To show that {k;) are fixed, suppose that {R(s), P(s)} is another triangular
MFRD of T(s). This new pair can be obtained from {R(s), P(s)} through Us).
Since R(s) and R(s) are triangular and U(s) is unimodular, then the diagonal
elements of U(s) in its upper left p x p block are nonzero constants, and so
neither the degrees of the diagonal elements {k;} of R(s) nor those of P(s) are
changed. For the same reason but by using Uj(s) and equations (3.10b) and
(3.10c) we get,

k=k, i=1,....p (3.12)

2 Per. Pol. EL 27,2
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On the other hand, by using Theorem I, &(s)=&4(s)

lim &(s)T(s) = K3 (3.13)
where K3 is of full rank p and has a lower-left triangular form. It follows from
the form of T(s) (equations (2.5) and (2.6)), and &x(s) that:

di=k+fi=k+f., i=1l...p (3.14)

and since p;;(s)=u;p;(s) (where o; is some constant), then
28 (puts) =ki+ fi,  i=1,...,p (3.15)
Q.E.D.

Lemma 5
“Let R(s) and P(s) be two m x m, lower-left, triangular invertible polynomial

matrices, and lim R(s)P ™ !(s)=K; with K nonsingular. Then P(s) will be row

proper if and only if R(s) is row proper, and in this case the two polynomial
matrices will have the same row indices.”

Proof

We shall prove only the “if” statement, and the “only if” one may be
proved in a similar way. Assume that R(s) is row proper with row indices é7;. By
expressing R(s) and the adjugate of P(s) according to their row degrees and
column degrees respectively and by using the same procedure given before in
the proof of Lemma 4, we have

jim > S)i?s"(s) =K (3.16)
where i
Si(s)= {7 (3.17a)
Si(s)= (s (3.17b)
R=[F] ij=12....m (3.17¢)
and
B,=[b"], i.j=1,2,...,m (3.17d)

with R, nonsingular.
Let
C2R,B, (3.18)
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then,
c,, st 0 0
' 1 C2185F2+5C1 C223573+(’Cz o 0 B
lim — =K
s=w S
le S(’rr'"m +écy sz S(‘me +dca Coum SCTF,,., +&cm
(3.19)
Since the limit is finite and K is nonsingular, then
dc;=n—0F;,V;, and (3.20)
c;#0,V; (3.21)
Since ¢;;=FbY and A0, V; (from nonsingularity of R)), then
: (h)
b #0,V; (3.22)

Hence B, is nonsingular and the column indices of the adjugate of P(s) are given
by equation (3.20), ie., B(s) is row proper with row indices equal to or;, V,
(Lemma 1)

Q.ED.

Corollary 1

“Let T(s)=R(s)P " !(s) be an invertible plant transfer function matrix, R(s)
and P(s)are RRP, and suppose that it is triangularized through L.s.v.f. alone and
the C.L.S. T(s) is described by the triangular pair {R(s) P(s)}. Then the degree of
the i-th row of &x(s) R(s) is equal to the degree of the i-th diagonal element in
P(s).”

In light of the previous analysis, we can construct now the following
algorithm to achieve the triangular form of an invertible system, through Ls.v.f.
alone.

Algorithm 1

Step 1 Find the interactor &(s) and the interactor indices {f;}, of the
uncompensated system T(s).

Step 2 Find the unimodulator matrix U(s) which reduces R(s) into a row
proper, lower-left, triangular form. Denote R(s) = R(s)U(s).

Step 3 The degrees of the diagonal entries of the desired triangular
denominator polynomial matrix, P(s) are given by: d;£d[pu(s)]=

= f;+k;. Choose any arbitrary polynomial (representing the character-
istic equation of the compensated system), with those degrees.

2=
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Step 4 Put arbitrary polynomials on the lower, off-diagonal entries of P(s),
with degrees constrained by the row indices of R(s)£ &(s)R(s) in the
sense of Lemma 5 and Corollary 1. The coefficients of those polynomials
are chosen such that,

éc,[PYU™ Ys)]=6c,[P(s)].  j=1,...,m (3.23)
and IT [P(s)U " !(5)] %0 (3.24)
Step 5 Find G and F(s) from the relations:
GIr [P(s)U " '(s)]=T[P(s)]  and
F(s)=P(s)—GP(s)U " Ys).  STOP.
Example 1

Consider the following unstable system

1 ______3__
s3+25+3
T(s)= , =
1 257 —s5—1
| 2+ 1 (s D(sP+2s+3)
[ 241 si\{skkl s+3 ]‘1
L1 2l 0 sP42s43
S ! ~ 4
R(s) P Ys)
Step 1
1 0
&,r(s)——:[ s} f1=0 and f,=3
Step 2
s -~ 1 0
U(S);—':——s 52+1J’ R(s)_[1~25 252-5—}—21]
k;=0 and £k,=2
Step 3

dl =0 and d2=5
_ 1 0
P(S)—l:ﬁn(s) S5+a1$4+0253+a352+a45+a5:|

It is obvious that all the five poles (closed loop poles) can be arbitrarily
chosen, e.g., at: —1, —14j, —2 and —2, ie,

Paafs) =5+ Ts* +20s> + 30s% + 245+ 8
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Step 4 Pa(s)=x05" + x 5% + x,58 + x357 + X,5+ X5
The values of x; satisfying equations (3.23) and (3.24) are: x, =0, x, = — 1,
x,=—7,x3=—19, x,= —23 and x; arbitrary. For simplicity set x5=0.

P o(s)=G '[P(s)—F(5)]=P(s)U " Y(s)=

[ osP+1 s
[ 5s7—15s s+ 75 +24s5+8
Step 5

1 0] 0 3
G"[~5 | @nd F(S)—[155+5 -—752—175—5}

and under this Ls.v.f. pair, the c.l.s. will be
1 0

T(s)=R(s)P~!(s5)= 5% —352 4+ 545+ 8 257 =542
(s+1)(2+25+2)(s+2)° (s+1)(s*+25+2) (s +2)?

Remarks:

(i) The system given in the previous example has weak inherent coupling,
so a precompensator; in addition to the Ls.v.f. is needed for diagonal (exact)
decoupling. Here, we achieved triangular decoupling through Ls.v.f. alone.

(i) Even the diagonal decoupling condition is achieved through a
precompensator, the invertible decoupling algorithm (Wolovich [ 7]), will yield
unstable-unobservable modes corresponding to the roots of |[R(s)| = 2s* — s+ 2,
and this problem disappears in the triangular decoupling case.

We can extend the previous results to the more general case p#m, by
using one of the following two methods:

(a) Make an extension to R(s) by adding (m— p), linearly independent
TOWS, 74 1(S), . . ., 'p(s) to form R.(s). Those rows are chosen such that:

(i) oc;[RYSI =c;[P(s)]; ¥,

(i) [Ro(s)Ug(s)] is lower-left, triangular, where Ug(s) is an mxm
unimodular matrix, which reduces R(s) to the lower-left triangular form,

(iii) the product of each added “p +i”-th row of R (s) and the correspond-
ing “p+i"-th column of Ug(s) is any desired stable polynomial of largest
possible degree, consistent with the other two conditions (Wolovich [7]). Then
we use Algorithm 1.

(b) We can use the same analysis described before, since Theorem [ has a
general form (p#m). The differences are:

(i) The last “m—p” columns of R(s) will be zero,

Gi) d,=k;+ f;, i=1;2;...,p,, and the other “m—p” indices,

m
dy.y, ..., d, are chosen such that _Zl d;=n,
&
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(iii) there is no guarantee of row properness of P(s) (Lemma 5 cannot be
applied in Step 4 of Algorithm 1), and hence trial and error may be used to
estimate the maximum degrees of the lower, off-diagonal polynomials of P(s).
Example 2

1 1 1
s+1 s+2 s+3
S) = ==
1
0 s+3 1
s+1 0 o |
1 s+3 1
= 0 (+2)(s+3) 0 ,
0 s+2 s+3
0 (s+3)
R(s) P7(s)
3 .
n= ) oc;=4
i=1
Step 1
s 0
&r(S)=[O 1], fi=1 and f,=0
Step 2
1 s+2 —s*—55—7
U 0 1 3 R(s) boo
= —_ S+ s S)=
(s 0 1 0
0 1 —(s+2)
31=1, g2=0 and a3=
Step 3
s+ay 0 0
f’(S)-': P21(5) 1 0

P3i(s) Paals) s*+bys*+bys+by

If it is desired to assign the c.ls. poles at —1; then a,=1. The three
disappeared modes can also be chosen arbitrarily, e.g., at —2, —3,and —3,ie,
bl —_-8, b2=21 and b3= 18.

Step 4
1 s+3 -1

U'is)=] 0 s+2 s+31,
0 1 1
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s+1 (s+1D(s+3) —(s+1)
POUT ) =] Bails) Pails)(s+3)+(s+2) —pau(s)+(s+3)
P31(8)  P3a(8)(s+3)+paalsh(s+2)+ Pasls)  —Psrls)+Paals)Hs+3) +p3(s)
Siuce ey =1, dc,=2 and dcy=1, then:
A(p21(s) =1, d(p3i(s)=1 and d(P3,(s)=2.

We have a big freedom of choice, e.g., p,,(s)=5, p3,(s)=0, p;3,(s)= —s*—3s
satisfying equations (3.23) and (3.24).

Step 5
-6 7 —1 7 22475 =9
G= 6 6 1 jand F(s)=| —6 —18—6s 6
-1 =1 0 1 1 —1

and under this Ls.v.f. pair the C.L.S. will be:

{1
— 0 0
R s+1
T(s)=
-2 10
s+1

4. The use of triangular decoupling for diagonalization
of systems having unobservable-unstable modes

It is known (Wolovich [7]) that, if the numerator polynomial matrix R(s)
of the O.L.S, as given by equation (2.1) is factorized as:

R(s)=Rq(s)Ro(s) (4.1)

where R,(s) is a nonsingular diagonal polynomial matrix, with each diagonal
element r, (s) equal to the ged of the corresponding i-th row of R(s), then the
roots of | Ry (s)| represent the only fixed poles of an invertible system decoupled
by combined ls.v.f. and input dynamics, and appear as cancellation pole-zero
terms, or unobservable modes. Wolovich [ 7], suggested the use of multi-stages
compensator to overcome this difficulty. In this section we will use the
triangular decoupling concept to give a new strategy for attacking this
problem, but first we outline Wolovich’s suggestion in the following finite steps.
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Algorithm 2
Step 1 Design an input dynamic P, (s) (as shown in Fig. /.a) such that
P, (s)=P (s)P(s) 4.2)

Input dynamic LS

vis) ,—;>I;gj;( Jl f>iP"‘(s% R(s)==2Y(s)

Fig. 1.a. The first-stage compensator

is a column proper polynomial matrix with equally chosen column
degrees u. These conditions may be satisfied through two substeps:
1.1) Compute a gain matrix G, as

Gl '=T[P(s)] (4.3a)

1.2) Construct a diagonal, stable compensator P *(s), where P (s)
consists of arbitrarily monic diagonal polynomials p of degree, -

p=max {ic;}, (4.3¢)
Pcl(s)-é—f’cl(s)G1 . (4.4)

Step 2 Use the Ls.v.f. technique to design the system feedback compensator (see
Fig. 1.b) such that the new denominator polynomial matrix P,(s) will
have the form,

| R(S>L——)Y

> 6, o= RS DIR (s Emmm=ov(s ) 2 Y(s) == (s)
2 D l[ [ L——lr“l /= W3 *M_ }

V(s)

Fig. 1.b. The second-stage compensator
P, (s)= s+ 2y (4.5)

where /. represents the desired, equally chosen C.L.S poles.
Step 3 Use a second series precompensator T (s) of the form:

T.(s)=R7(s)D7'(s) (4.6)
where R 7(s) is an m x p polynomial matrix chosen such that,
R(s)R™(s)=4(s)I

p?
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D(s) i1s an p x p diagonal polynomial matrix, with stable arbitrary
entries having degrees just enough to ensure that R (s)D ~!(s) is proper
(see Fig. 1.c).

Figy. 1.c. The third-stage compensator

If m=p (the invertible case), it is obvious that,
R*(s)=adj R(s), (4.8a)
A(s)=|R(s)| (4.8b)

For the general case (p#m), R¥(s) may be obtained in the following way:
3-1) Find Ug(s) the unimodulator matrix which reduces R{s) into the
lower-left, triangular form,

Rp(s)=R(s) Ug(9)=[P(5) O, x (- p] (4.9)
3-2) Let,
R*(s)=adj R(s) (4.10a)
R* ()= Ug(s) [Rf@ J (4.10b)
O(m —-php
and hence,

A(s)=|R ()] (4.10c)

STOP. ~ ~

In our opinon better results can be obtained by using the trian-
gularization technique as follows:

Algorithm 3

Step 1 Use Algorithm 1 to obtain the stabilized and triangular form T(s).
Step 2 Omit the last (m — p)-zero columns of T(s) and factorize the remainder,
p x p submatrix Ty(s) as:

To(s)=Q  (s)L(s) (4.11)
where Q(s) is a p x p, nonsingular, diagonal, polynomial matrix whose
i-th entry gq;(s) represents the l.c.m. (monic) of the denominator

polynomials in the i-th row of Ty(s).
Factorize L(s) as:

L(s)=Lq(s)L(s) (4.12)
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where Ly(s) is the diagonal left divisor of L(s) of maximum row degree.
Step 3 Design a precompensator T.(s) as follows. Let B(s)£adj L(s). The
precompensator description T.(s) will be given by:

To(s)=[B(S)D'(8) 0px(m—p)] (4.13)

where D (s) is a diagonal polynomial matrix of arbitrarily chosen
nonzero entries such that T_(s) is proper. A sufficient condition for this
purpose is éc[B(s)]=0c;[D.(s)], j=1,2,...,p. The C.L.S. (diagonal
form) will be:

T4(s)=T(s)Te(c)=]L(s)| La(s) (D(5)Q(s)) ! (4.14)
STOP
Example 3 -
sPH1 SS4si41
s? s3 sS+1 1]s —1
T(S)= = ,
s+3 2s*+s5+3 s?+3s 2{l0 1
2 s

It is evident that the use of Wolovich’s invertible decoupling algorithm
will yield unobservable-unstable modes at s=1 and at s=2.

Step 1
p=3
P, (5)= 1
=1 s +aVs? +all's+a)

where ai") are arbitrarily chosen,
) s 0
P Sp=
! 0 s*+a’s*+als+al!

G=Iz,

F(s)= —(34st +34%s+ 43 0
)= 0 (@ = 32)5% + (% — 34%)s +(as — 4%)

R(s)
(s+4)?

R(s)P; '(s)=
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Step 3
2 —1 s> +d{Us+d%P 0
+( — = 1 2
RY) [—(s2+3s) s7‘+1]’ D) [ 0 s2+d§2’s+d‘§’]
where d{! and d!® are arbitrarily chosen.
The diagonal system will be:
(s—1)(s—2) 0
- (s+ A3 (s* +dPs +dP)
S)=
! (s—1)(s—2)

0 3
(s+A)3(s* +dPs+dP)

By using Algorithm 3

Step 1
Er(s)= oo fi=0, and f,=1
™ =2 s T T -
Uls)= 0 1 U Y(s)= 1+s%1
O=17 -2 11 0
REO=ROUE=|)
©)=R(s) Uls)= 2 —2+43s—5%
k,=0, k,=2, d,=0, and d,=3
P(s)= : 0 A(s)2s* +a;5° +a,s+a
Pa1(s) s*+a,s*+ays+as |’ ! : 3

R ~ 1 0 1+s%1
P@Ulwz&mnmJ [1 J

Since dc,[P(s)U~Y(s)]=0, then &{p,,(s)}=0. Let p,,(s)=«, a#0 (from
equations (3.23) and (3.24)), then

o _ 1452 1
POUTo)= [a(1+32)+A(s) a]’

- ~ o 1 0
T(s)=R(s)P 1@):{ 24(s)+ (2 —3s+ %) -—2+3s——sz]

A(s) As)




112 MONESS, M~LANTOS, B.

Fora=1 (e.g) -
-2 1
o[ o)
[ —laz—1)—as—(a,—1)s* 0
F(S)“{ —(1+5?) o]
Step 2

TO(S):T(S) >

107 . ! 0
Q(s)= [O A(s)jl’ L(s)=L(s)= [2A($)-{~(2-—3S+Sz) ——2+3s-sz]

—2+435—s? 0
B(s)= [—241(3)—(2-—35-}—32) 1}’

B i:d3+dzs+d152+s3 OJ
B 0 1

—(2=3s+5Y
dy+dys+dys*+s’
—24(s)—(2—3s+5%)
dy+d,s+d;s* +5°

[+

where d; are arbitrarily chosen.

—2+3s—s*
dy+d,s+d;s*+5s°

0

Tyls)=
al —2+3s5—52

0 2 3
as+a,s+a,;s°+s

For this particular example, Algorithm 3 yields one precompensator of
order “3” and ls.v.f. of order “2”. The use of Algorithm 2, yields two
precompensators of orders “3” and “4” respectively and Ls.v.f. of order “4”.
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5. Conclusion

This paper deals with the triangular decoupling problem through ls.v.f.
by using the frequency-domain approach. We actually use the MFRD to prove
our results, given as Theorem 2, Lemma 3, and Corollary 1. Those results enable
us to learn the degrees of the diagonal entries of the compensated system,
and accordingly to construct a concrete algorithm (Algorithm 1) for tri-
angularization of any right-invertible system by using Ls.v.f. alone.

The triangular form is less simple than the diagonal one, but it has the
following two advantages:

1— Itisaless expensive technique, especially for systems having weak inherent
coupling since we do not need an input dynamic in addition to the Ls.v.f.
ii— The problem of unstable — unobservable modes does not appear.

We make use of the latter advantage to develop a new technique, given as
Algorithm 3, for the exact decoupling of systems having unstable-unobservable
modes. Our algorithm has the following advantages over the only known
suggestion dealing with this problem:

i— We use only one precompensator, and in turn a limited increase in the

C.L.S. order. :

ii— The Ls.v.f. order is less than or equal to that obtained by the old method.
iii— All the C.L.S. poles are arbitrarily chosen.
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