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Summary 

The paper studies the problem of triangular decoupling through l.s.v-f. using frequency
domain approaches. The interactor concept and the matrix fraction right description form are 
used to resolve the questions concerned with this problem and in turn an algorithm is given for 
triangularization of any right invertible proper system by using l.s.v.f. alone. The paper describes 
the use of triangular decoupling as an intermediate step for exact decoupling of systems having 
unstable decoupling zeros. 

1. Introduction 

The triangular decoupling concept was introduced by Morse and 
Wonham [3]. They used the geometric approach to solve the triangular 
decoupling problem (TO P) by the use of linear state variable feedback (1.s. v.f.) 
control law. Algebraically the problem using the time-domain approach was 
already attacked by many authors. Wang [6], \vas the first who proved that the 
necessary and sufficient conditions for the existence ofl.s.v.f.laws for triangular 
decoupling are equivalent to the conditions of invertibility, i.e., an invertible 
system can always be triangularized by using l.s.v.f. alone. More recently, 
alternative forms and generalization were given by Furta and Kamiyam [2], 
and Oescusse and Lizarzaburu [lJ, respectively. It is important to note that the 
time-domain approach is based mainly upon the Silverman's inversion 
algorithm [4], and Silverman-Payne structure algorithm [5]. 

In the frequency-domain, Wolovich [7J, suggested an algorithm for TOP 
by using I.s.v.f. In our opinon a more theoretical material is needed to modify 
and satisfy this algorithm. Actually we shall use the interactor idea. which is the 
frequency-domain version of Silver man work used to resolve TOP in the time
domain, for such a purpose. 

In § 2 a background necessary material is given. The main results are 
given as Theorem 1, Theorem 2, and Algorithm 1 in § 3. These results will be 
used in § 4 to construct a new and more efficient algorithm for the diagonal 
decoupling of systems having unobservable-unstable modes. 

* Assiut University Egypt. 
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2. Preliminaries 

Definition 1. Triangular decoupling through l.s.v.f. A p x rn, proper, right
invertible system T(s), expressed in its minimal controllable form, 

T(s) = R(s) P- l(S) (2.1 ) 

where R(s) and P(s) are RRP; and P(s) column proper, is said to be triangularly 
decoupled by l.s.v.f., if there exists a l.s.v.f. control law, 

such that the CL.S., 
U(s)= F(s)X(s) + GV(s) 

T(s) = R(s) [P(s) - F(s)] - 1G 

is in lower-left triangular form with 

cclP(s)J = ccj[P(s)- F(s)J , 

and G - 1 re [P(s)J = re [G -l(P(S) - F(s))J 

(2.2) 

(2.3) 

(2.4a) 

(2.4b) 

Let us consider the invertible case (p = rn). By making use of Wang's 
theorem [6J, there is a pair {F(s), G} which satisfies equation (2.3), i.e., 

i\ 1 (s) 

P 11 (s) 
0 0 

f2ds) f22(S) 
0 

T(s)= PZ1 (s) P2Z (s) (2.5) 

Pm1 (s) f mZ (s) fmm(s) 

Pmds) PmZ(s) Pmm(s) 

It is always possible to put equation (2.5) in the form, 

T(s) = R(s) P - l(S) (2.6a) 

where R(s) and I>(s) are RRP and both are triangular, i.e., 

r 11 (s) 0 0 

R(s)= 
rzds) r22 (s) 0 

(2.6b) 

r m1 (s) rmZ(s) r mm(s) 
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PI ds) 0 

P(s)= 
P2 ds) P22 (S) 

o 
o 
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(2.6c) 

The representation (2.6) is not unique and our study will include the 
following questions: 

(i) What is the relation between R(s) and R(s), and between P(s) and P(s)? 
(ii) Are there other common (invariant) properties than those given by 

equation (2.4)? 
(iii) Is it possible to have P(s) in column or row proper form? 

The following lemmas are needed to resolve questions: 

Lemma 1 

"If P(s) is an m x m column (row) proper invertible polynomial matrix, 
with column (row) indices oCj , j = 1,2, ... , m (cri' i = 1, 2, ... , m), then its 
adjugate matrix B(s) is row (column) proper polynomial matrix with row 
(column) indices ori(oc) given by 

Lemma 2 

m 

n= L OC j 
j= 1 

"If T(s) = R(s) P - I(S) is an p x m transfer function matrix with P(s) m x m 
invertible, column proper polynomial matrix and ccj[R(s)] ~ ccj[P(s)],'\fj, then 
T(s) is proper." 

Lemma 3 (Wolovich and Falb [8J) 

"For any p x m proper rational transfer function matrix T(s), there is a 
unique, nonsingular p x p lower-left triangular matrix ;T(s) of the form, 

;T(s)=HT(s)(sh, .. . ,sIp) 
where, 

0 0 

h21 (s) 0 
HT(S) = 

hpl (s) hp2 (s) 
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and hij(s) is divisible by s (or zero) such that: 

lim <;T(S) T(s)= KT. with KT of full rank p." 
s ...... x; 

Dt;!f/nitioll 2. The interactor I;T(S) and { fi}¥are called the interactor and the 
interactor indices respectively. 

Lemma 4 

"Let R(s) and P(s) be two m x m, invertible polynomial matrices and 

lim R(s) p-l = R with K nonsingular. Then R(s) is column proper and has the 

same column indices as P(s) if and only if P(s) is column proper." 

Proof 

To prove the "if' statement. assume that P(s) is column proper and cC j is 
the j-th column index. The inverse of P(s) is: 

(2.7) 
m 

where Llp(s)=IP(s)1 and of degree n= I Dej , B(s) is the adjugate of P(s). By 
j= 1 

using Lemma 1. 8(s) can be written in the form: 

(2.8) 

where h = max {cri}, and (2.9a) 

S- is)_<s''rl-' sfrm ') (?9b) h i\" -" •... , _. 

and Rh is a nonsingular matrix, and the elements in the Ri corresponding to the 
negative power of s are zero. 

Now, express R(s) according to its column degrees oCj , 

R(s)=RtS1(s)+ ... +Ro 

where SI_i(S)=<Sce1
-', •• • ,scem

-,) 

Since, lim R(S)P-l(S)= K (K nonsingular), 

(2.10) 

(2.11 ) 

(2.12) 

for any nonsingular scalar matrix L. By postmultiplying equation (2.11) by Rh 1 

we have, 

(2.l3) 
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Let, 
S .(s) = (SCC! +n-cc!-i Socm+n-CCm-i) h+I-1 ' ... , (2.14) 

Since the limit is finite, then 

lim (~ R1Sh + 1 (S») = KBh- 1 
s- 00 S 

(2.15) 

F S I ,. I' R- d Sh+I(S) f k . R-' rom y vester s mequa Ity, 1 an n are 0 ran m, I.e., I IS 
S 

nonsingular and oCj=ocj ; 'V j , and this means that R(s) is column proper and 
has the same column indices as P(s). 

To prove the "only if' statement we can use the same procedure for the 
assumption that R(s) is column proper to prove that pes) will also be column 
proper and has the same column indices as R(s). 

Q.E.D. 

3. Triangularization: theorem and algorithm 

In this section we will give the theoretical base for triangularization as 
Theorem 2, and an algorithm to construct a l.s.v.f. compensator for such a 
purpose. The following theorem will also be used. 

Theorem 1 

"F or every right invertible plant transfer function matrix, the interactor is 
invariant under l.s.v.f. control law:' 

Proof 

Consider ap x m O.L.S. as given by equation (2.1). The CL.S. under Ls.v.f. 
is given by: 

T F.G(S) = R(s)[P(s) - F(s)] -lG (3.1) 

with the same conditions given by equation (2.4). If ~(s) and ~(s) are the 
interactors of T(s) and T F,G(S) respectively we want to prove that ~(s) = ~(s). 

We begin first with the special case p=m. Let, 

~(S)=H(S)(Sfi) 

~(s)=H(s) (sli) 

(3.2a) 

(3.2b) 

From Lemma 3 and Lemma 4, ~(s)R(s) and ~(s)R(s) are column proper with, 

ocl~(s)R(s)] = oclP(s)] 

ocl~(s)R(s)] = oclP(s)- F(s)] = oclP(s)] 

(3.3a) 

(3.3b) 
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From Lemmas (4) and (2), it follows that 

[~(s)R(s)] [~(s)R(s)] - 1 = H(s) <sfi - Ji) H - 1(S), (3.4a) 
[~(s)R(s)] [~(s)R(s)] -1 = H(s) <SJi- fi)H 1(S), (3.4b) 

are both proper. It is easy to prove, by using equation (3.4) and the special form 
of H(s) and H(s), that, 

(3.5) 

Now, both H(s) and H(s) are unimodular, lower-left, triangular matrices 
with diagonal entries "1". Hence H(s) = H(s) = U(s) is unimodular, proper and 

satisfies lim U(s) = L, with L nonsingular. Since each hij(s) and nij(s) are 
s-co 

divisible by s (or zero), therefore U(s)=I and 

H(s) = H(s) 

It is evident from equations (3.5) and (3.6) that: 

~(s)= ~(s) 

(3.6) 

(3.7) 

If p #- m, but T(s) is right invertible, then R(s) is of full rank p and there are 
"m-p" row vectors, r p + 1(s), .. . ,rm(s) (with polynomial entries) such that the 
extended numerator polynomial, 

R(s) 

(3.8) 

is nonsingular .and Te(s}= Re(s)P-l(s) is proper. From Lemma 3 there is a 
unique interactor <;e(s) having the form, 

<;(s) : Op,m-p 

~(s)= (3.9) 

m-p,p: m-p,m-p 

such that lim <;e(s)Tis) = Ke. From the previous proof of the special case p =m, 
s-co 

<;e(s) is invariant under l.s.v.f. and hence ~(s) is also invariant. 

Q.E.D. 
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Hint. This proof is an almost word by word repetition of the one used by 
Wolovich and Falb [8J, to establish the uniqueness and existence of ;(s) for 
p#m. 

Theorem 2 

"Let, T(s) = R(S)P-I(S) be a P x m right invertible plant transfer function 
matrix, R(s) and P(s) RRP, and 1'(s) be a CL.S., triangularized by the l.s.v.f. pair 
{F(s), G}. For all the MFRD possibilities of1'(s) as a triangular pair {R(s), P(s)}, 
the degrees of the diagonal entries of {R(s), P(s)} denoted by -[ kj , dJ are fixed 
and given by the relations: 

i= 1, ., .,p 

where, {kJ == degrees of the diagonal entries of any lower-left, triangular form of 
R(s), and Lt;} are the interact or indices of T(s)." 

Proof 

We assume that R(s) is in lower-left, triangular form. It is well-known, 
Wolovich [7J, that R(s) (in equation (2.3)) may be varied through 1.s.v.f. within 
only a unimodular factor, i.e., 01 R(s)1 and the roots ofl R(s) I are invariant under 
1.s. v.f. Hence the effect of a I.s. v.f. on R(s) can be described by some unimodular 
matrix Vis), 

then 

1'(s) = R(s) [P(s)lJ j I(S)J 1 

= R(s)Vis)P- 1(s) 

= R(s)P- I(S) 

(3. lOa) 

(3.10b) 

(3.l0c) 

Let 1'(s) = R(S)P-I(S) be a MFRD of1'(s) as a triangular pair {R(s), P(s)}, 

kjgc{rii(s)} (3.11a) 
~ ~ ~f 1 dj=ClPii(S)s. (3.l1b) 

To show that {ki } are fixed, suppose that {R(s), P(s)} is another triangular 
MFRD of 1'(s). This new pair can be obtained from {R(s), P(s)} through O(s). 
Since R(s) and R(s) are triangular and U(s) is unimodular, then the diagonal 
elements of U(s) in its upper left P x P block are nonzero constants, and so 
neither the degrees of the diagonal elements {kJ of R(s) nor those of P(s) are 
changed. For the same reason but by using Vj(s) and equations (3.l0b) and 
(3.10c) we get, 

i= 1, ... , P (3.12) 

2 Per. Pol. El. 27/2 
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On the other hand, by using Theorem 1, ~T(S) = ~T(s) 

(3.13) 

where KT is of full rank p and has a lower-left triangular form. It follows from 
the form of T(s) (equations (2.5) and (2.6)), and ~T(S) that: 

i=1, ... ,p 

and since Pii(S) = ~djii(S) (where ~i is some constant), then 

i= 1, " .,p 

Lemma 5 

(3.14) 

(3.15) 

Q.E.D. 

"Let R(s) and P(s) be two m x m, lower-left, triangular invertible polynomial 

matrices, and lim R(s)P - I(S) = K; with R nonsingular. Then P(s) will be row 

proper if and only if R(s) is row proper, and in this case the two polynomial 
matrices will have the same row indices." 

Proof 

We shall prove only the "if' statement, and the "only if' one may be 
proved in a similar way. Assume that R(s) is row proper with row indices ofi • By 
expressing R(s) and the adjugate of P(s) according to their row degrees and 
column degrees respectively and by using the same procedure given before in 
the proof of Lemma 4, we have 

where 

and 

with RI nonsingular. 
Let 

SI(S) = <ser,) 

SI(S) = <SCC') 

RI = [fiY] i,j 1,2, ... , m 

B - [b(h)] " - 1 2 h - ij' I,j - , , ... , m 

(3.16 ) 

(3.17a) 

(3.17b) 

(3.17c) 

(3.17d) 

(3.18) 
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then, 
c Si}ri +i'c l 

11 o 
1 C21Sor2+ccl C22Scr2+cc2 

lim -
s-+ 00 sn 

Since the limit is finite and K is nonsingular, then 

and 

o 
o 

S· - ;:i/)b(hl d ;:ill 0 (f . I' f -) h mce cjj - rjj jj an rjj =1= , Vj , rom nonsmgu anty 0 RI' t en 
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(3.19) 

(3.20) 

(3.21 ) 

bW=I=O, Vj (3.22) 

Hence Bh is nonsingular and the column indices of the adjugate ofP(s) are given 
by equation (3.20), i.e., B(s) is row proper with row indices equal to crj, Vj 
(Lemma 1) 

Q.E.D. 

Corollary 1 

"Let T(s) = R(s)P - l(S) be an invertible plant transfer function matrix, R(s) 
and P(s) are RRP, and suppose that it is triangularized through l.s.v.f. alone and 
the c.L.S. T(s) is described by the triangular pair {R(s) P(s)}. Then the degree of 
the i-th row of ;T(S) R(s) is equal to the degree of the i-th diagonal element in 
P(s)." 

In light of the previous analysis, we can construct now the following 
algorithm to achieve the triangular form of an invertible system, through l.s.v.f. 
alone. 
Algorithm 1 

Step 1 Find the interactor ;~s) and the interactor indices {h}, of the 
uncompensated system T(s). 

Step 2 Find the unimodulator matrix U(s) which reduces R(s) into a row 
proper, lower-left, triangular form. Denote R(s) = R(s)U(s). 

Find kj ~ a[fj~s)J, i = 1,2, ... , m. 

Step 3 The degrees of the diagonal entries of the desired triangular 
denominator polynomial matrix, P(s) are given by: d j ~ c[pu(s)] = 
= h + kj • Choose any arbitrary polynomial (representing the character
istic equation of the compensated system), with those degrees. 

2* 
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Step 4 Put arbitrary polynomials on the lower, off-diagonal entries of P(s), 
with degrees constrained by the row indices of R(S)£~T(S)R(s) in the 
sense of Lemma 5 and Corollar,v 1. The coefficients of those polynomials 
are chosen such that. 

('1Cj [P(s)U I(S)]=c'cj[P(s)], j=l, ... ,m 

and \ fc[P(s)U -I(S)\ #0 

Step 5 Find G and F(s) from the relations: 

Grc[P(s)U-I(S)]=lc[P(S)] and 

F(s)= P(s)- GP(s)U 1(5). STOP. 

Example 1 

Consider the following unstable system 

T(s)~ [ 

~ [5'7 1 ~J[": 1 S3 :::J-' 
~ '~----~V~----~I 

R(s) 

Step 1 

~.~S)=[ 1 ~J, fl =0 and f2=3 
-s s 

Step 2 

U(S)=[ 1 
-s -sJ 

S2 + 1 ' 

Step 3 

(3.23) 

(3.24) 

It is obvious that all the five poles (closed loop poles) can be arbitrarily 
chosen, e.g., at: - 1, - 1 ±j, - 2 and - 2, i.e., 

P22(S) = S5 + 7 S4 + 20s3 + 30s2 + 24s + 8 
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S 4 A ()_ 5 4 3 2. tep P21 S -XoS +X 1S +X2S +X 3S +X4 S+X 5 

The values of Xi satisfying equations (3.23) and (3.24) are: Xo = 0, Xl = -1, 
x 2 = -7, X3 = -19, X4 -23 and X5 arbitrary. For simplicity set X5 =0. 

i\. ds) = G - 1 [P(s) - F(s)J = P(s)U - I(S) = 

Step 5 

and under this 1.s. v.f. pair, the c.l.s. will be 

T(s)=R(s)P-I(S)= r S3-3s2~54S+8 l (s+1)(s2+2s+2)(s+2f 
Remarks: 

(i) The system given in the previous example has weak inherent coupling, 
so a precompensator; in addition to the 1.s.v.f. is needed for diagonal (exact) 
decoupling. Here, we achieved triangular decoupling through 1.s.v.f. alone. 

(ii) Even the diagonal decoupling condition is achieved through a 
precompensator, the invertible decoupling algorithm (Wolovich [7J), will yield 
unstable-unobservable modes corresponding to the roots of I R(s) 1= 2S2 - S + 2, 
and this problem disappears in the triangular decoupling case. 

We can extend the previous results to the more general case P #- m, by 
using one of the following two methods: 

(a) Make an extension to R(s) by adding (m - p), linearly independent 
rows, r p + 1{s), ... ,rm{s) to form Re{s), Those rows are chosen such that: 

(i) oclRe{s)] ~ ocj[P{s)J; Vj' 
(ii) [Re{s)UR{s)J is lower-left, triangular, where UR(s) is an m x m 

unimodular matrix, which reduces R(s) to the lower-left triangular form, 
(iii) the prod uct of each added "p + i" -th row of Re(s) and the correspond

ing "p + i" -th column of UR{s) is any desired stable polynomial of largest 
possible degree, consistent with the other two conditions (Wolovich [7J). Then 
we use Algorithm 1. 

(b) We can use the same analysis described before, since Theorem I has a 
general form (p #- m). The differences are: 

(i) The last "m - p" columns of R(s) will be zero, 
(ii) di = ki + h, i = 1; 2; ... , Pm' and the other "m - p" indices, 

m 

dp + l' ... , dm are chosen such that I di = n, 
i; 1 
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(iii) there is no guarantee of row properness of :(>(s) (Lemma 5 cannot be 
applied in Step 4 of Algorithm 1), and hence trial and error may be used to 
estimate the maximum degrees of the lower, off-diagonal polynomials of :(>(s). 
Example 2 

[1 1 ,:3] s+1 s+2 
T(s) = = 

o _1_ 
s+3 

0 

r 1 J[':1 0 

= [~ s+3 
(s+2)(s+3) o , 

s+2 s+3 
0 0 (s+ 3) 

I Y Y 
R(s) p-l(S) 

3 

n= j~l 8cj =4 

Step 1 

Step 2 

s + 2 - S2 - 5s - 7 J 
-1 s+3 , 

1 -(s+2) 

~ [1 R(s)= 0 o ~] 

a1 = 1, a2=O and a3=3 
Step 3 [ ,+a, 0 

" +b"L,s+J 
:(>(s)= P21(S) 1 

P31 (s) P32(S) 

If it is desired to assign the c.l.s. poles at -1; then a1 = 1. The three 
disappeared modes can also be chosen arbitrarily, e.g., at - 2, - 3, and - 3, i.e., 
b1 =8, b2 =21 and b3 =18. 

Step 4 
s+3 

s+2 

1 
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[ 

s+ 1 (05+ l)(s+3) 

P(sjU- 1(s)= P21(S) P21(S)(s+3)+(s+2) 

P31 (s) P31 (s) (s + 3) + pds) (s + 2) + P33(S) 

-(05+ \) J 
-Pzl(s)+(s+3) 

- P31(S) + pds) (s + 3) + P33(S) 

Si .. ce CC I = 1, oc2 =2 and CC 3 = 1, then: 

C(P2 I (s)) ~ 1, D(P31 (s) ~ 1 and D(P3Z(S)) = 2. 

We have a big freedom of choice, e.g., P2ds)=s, P31(S)=O, P32(S)= -s2-5s 
satisfying equations (3.23) and (3.24). 

Step 5 

f 
-6 

G= 6 

-1 

7 

6 

-1 

-1 1 r 7 
~ and F(s)~ l -~ 

22+7s -:] 
-1 

-18-6s 

and under this l.s.v.f. pair the CL.S. will be: 

4. The use of triangular decoupling for diagonalization 
of systems having unobservable-unstable modes 

It is known (Wolovich [7J) that, if the numerator polynomial matrix R(s) 
of the O.L.S, as given by equation (2.1) is factorized as: 

(4.1) 

where Rd(S) is a nonsingular diagonal polynomial matrix, with each diagonal 
element rdi(s) equal to the gcd of the corresponding i-th row of R(s), then the 
roots of I Ro(s)1 represent the only fixed poles of an invertible system decoupled 
by combined l.s.v.f. and input dynamics, and appear as cancellation pole-zero 
terms, or un observable modes. Wolovich [7J, suggested the use of multi-stages 
compensator to overcome this difficulty. In this section we will use the 
triangular decoupling concept to give a new strategy for attacking this 
problem, but first we outline Wolovich's suggestion in the following finite steps. 
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Algorithm 2 

Step 1 Design an input dynamic P cl (s) (as shown in Fig. l.a) such that 

(4.2) 

input dynamic 0 L S 

Fig. l.a. The first-stage compensator 

is a column proper polynomial matrix with equally chosen column 
degrees p. These conditions may be satisfied through two substeps: 
1.1) Compute a gain matrix G 1 as 

(4.3a) 

1.2) Construct a diagonal, stable compensator 1\ 1 (s), where PC! (s) 
consists of arbitrarily monic diagonal polynomi~ls Fe? of degree, . 

p=max {ccJ, 
PC! (s)~ PC! (s)G 1 . 

(4.3b) 

(4.3c) 

(4.4) 

Step 2 Use the l.s.v.f. technique to design the system feedback compensator (see 
Fig. l.b) such that the new denominator polynomial matrix P 2 (s) will 
have the form, 

Fig. l.b. The second-stage compensator 

P 2 (s) = «(s + ;.)1') 

where ;. represents the desired, equally chosen c.L.S poles. 
Step 3 Use a second series precompensator Tc(s) of the form: 

Tc(s) = R + (s)D - 1(S) 

where R +(s} is an m x p polynomial matrix chosen such that, 

R(s) R + (s) = Ll (s)Ip, 

(4.5) 

(4.6) 

(4.7) 
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D(s) is an p x p diagonal polynomial matrix, with stable arbitrary 
entries having degrees just enough to ensure that R +(s)D -l(S) is proper 
(see Fig.I.c). 

Fig. I.c. The third-stage compensator 

If m = p (the invertible case), it is obvious that, 

R +(s) = adj R(s), 

Ll(s)=IR(s)1 

(4.8a) 

(4.8b) 

For the general case (p:;i:m), R+(s) may be obtained in the following way: 
3-1) Find UR(s) the unimodulator matrix which reduces R(s) into the 

lower-left, triangular form, 

(4.9) 

3-2) Let, 
(4. lOa) 

(4. lOb) 

and hence, 
Ll(s)=IR(s)1 (4.10c) 

STOP. I 

In our opinon better results can be obtained by usmg the trian
gularization technique as follows: 

Algorithm 3 

Step I Use Algorithm 1 to obtain the stabilized and triangular form 1'(s). 
Step 2 Omit the last (m - p)-zero columns of 1'(s) and factorize the remainder, 

p x p submatrix 1'0(5) as: 

1'o(s)=Q-1(s)L(s) (4.11) 

where Q(s) is a p x p, nonsingular, diagonal, polynomial matrix whose 
i-th entry qii(S) represents the 1.c.m. (monic) of the denominator 
polynomials in the i-th row of 1'0(5). 
Factorize L(s) as: 

(4.12) 
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where Ld(S) is the diagonal left divisor of L(s) of maximum row degree. 
Step 3 Design a precompensator Tc(s) as follows. Let B(s)~adj L(s). The 

precompensator description Tc(s) will be given by: 

(4.13) 

where Dc(s) is a diagonal polynomial matrix of arbitrarily chosen 
nonzero entries such that Tc(s) is proper. A sufficient condition for this 
purpose is ccJB(s)] = ocj[Dc(s)], j = 1, 2, ... , p. The CL.S. (diagonal 
form) will be: 

T d(S)= T(s)Tc(c) = I L(s)l Ld(S) (Dc(s)Q(s» - 1 (4.14) 
STOP 

Example 3 -1 

T(s)= 

S2 + 1 53 + 52 + 1 
53 S2 + 1 

S2 +35 2 

'-y---I 

R(s) 

05
3 -1 

0 

~ 

P I(S) 

It is evident that the use of Wolovich's invertible decoupling algorithm 
will yield unobservable-unstable modes at s = 1 and at 5 = 2. 

Step 1 
f.l=3 

where a~ 1) are arbitrarily chosen, 

Step 2 

-1 R(s) 
R(5)P2 (s)= ( ')3 

5+1, 
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where dP) and d\2) are arbitrarily chosen. 
The diagonal system will be: 

[ (,-1)(,-2) 

By using Algorithm 3 
Step 1 

o 1 (s-l)(s-2) 

[0 1 J -1 [1+S
2 1J U(s)= 1 -1-s2 ' U (s)= 1 0 

~ [1 0 J R(s)=R(s)U(s)= 2 -2+3s-s2 

~ - 1 [1 0 ] [1 + S2 1 J 
pes) U (s)= P21(S) J(s) 1 0 

111 

Since OC2[P(S)U- I (S)] =0, then O{P21(S)} =0. Let P21(s)=a, a:;i:O (from 
equations (3.23) and (3.24», then 

~ -1 [ 1 +S2 IJ 
P(s)U (s)= a(1 +S2)+J(S) a ' 

~ ~ ~ [1 0] Ts-RsP-ls-
()- () ()- 2J(s)+a(2-3s+s2 ) -2+3s-s2 

J (s) J (s) 
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For a= 1 (e.g.) 

[-2 IJ 
G= 10' 

Step 2 
T o(s) = T(s) , 

Q(s)= [~,1~s)l L(s)=L(s)= [2,1(S)+(2
1
_3S+S2) -2+~S-s2J 

Step 3 

[ 
-2+3s-S2 0J 

B(s)= ? , 

-2.1(s)-(2-3s+s-) 1 

DAs)= [d3+d2S~dlS2+S3 ~J 

-(2-3s+s2) 
d3 +d2s + d1 S2 +S3 

- 2.1 (s) -(2 - 3s + S2) 

d3+d2S+dlS2+S3 

o 

where di are arbitrarily chosen. 

o 

o 

For this particular example, Algorithm 3 yields one precompensator of 
order "3" and l.s.v.f. of order "2". The use of Algorithm 2, yields two 
precompensators of orders "3" and "4" respectively and l.s.v.f. of order "4". 
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5. Conclusion 

This paper deals with the triangular decoupling problem through l.s.v.f. 
by using the frequency-domain approach. We actually use the MFRD to prove 
our results, given as Theorem 2, Lemma 3, and Corollary I. Those results enable 
us to learn the degrees of the diagonal entries of the compensated system, 
and accordingly to construct a concrete algorithm (Algorithm 1) for tri
angularization of any right-invertible system by using l.s.v.f. alone. 

The triangular form is less simple than the diagonal one, but it has the 
following two advantages: 
1- It is a less expensive technique, especially for systems having weak inherent 

coupling since we do not need an input dynamic in addition to the l.s.v.f. 
ll- The problem of unstable - unobservable modes does not appear. 

We make use of the latter advantage to develop a new technique, given as 
Algorithm 3, for the exact decoupling of systems having un stable-un observable 
modes. Our algorithm has the following advantages over the only known 
suggestion dealing with this problem: 
i-We use only one precompensator, and in turn a limited increase in the 

CL.S. order. 
ii- The l.s.v.f. order is less than or equal to that obtained by the old method. 
iii- All the c.L.S. poles are arbitrarily chosen. 
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