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Summary 

A very important problem in linear system theory is the following: Is the operator of a 
BIBO-system a continuous operator of the corresponding normed space? The results of 
functional analysis can be applied in case of an affirmative answer only. It is proved for a time
invariant causal linear system that the operator of a BIBO-system is always continuous under 
general conditions (Proposition 3). 

1. A linear system is called bounded input bounded output (BIBO) 
system if for any admissible bounded input, the response is bounded and it is 
called bounded energy system (or energy BIBO) if for any admissible input 

+x +x 

X = x(t), the condition S x(t)2dt < 00 implies S y(t)2dt < 00, for the response 
-x -~ 

Y= y(t). 
More generally, a linear system is called bounded in the norm It.1I (or 

Bl BO) if for every input x = x(t) with 11 x 11 < 00 the response is such that 
Ilyll<oo. 

Linear operator is the concept in mathematics corresponding to linear 
input-output system. The operator corresponding to a linear system is the rule 
which describes the relation between input ;md output signals. If y is the 
(unique) response for the input x, then the operator T of the system is 

Tx = y (for every admissible x) 

and the system is BIBO if T maps the Banach space X, generated from the 
input signals x with Ilxll < 00, into itself. 
Remark 

If Tx EX, then by definition 11 Tx 11 < 00 and hence the system correspond
ing to T is BIBO. 

Shortly, a linear system is BIBO means exactly that the operator T 
corresponding to th.'e system is an (everywhere defined) linear operator of a 
Banach space X. 
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A system is called time-invariant if for any admissible input x = x(t}, 
[U rX] (t): = x(t - r} is also admissible and the response for U rX' the shifted x, is 
the shifted y namely U rY. In mathematical expressions, a system is time
invariant if 

a. U rX E X for every x E X and Ury E Y for every yE Y (where r is any 
positive number): 

b. UrT=TU t 

in this case both X, Yand T are called transiation-, or shift-invariant. 
The mathematical description of time-invariant linear system is the 

theory of convolution operators where T is considered as continuous shift
invariant linear operator. Recall, that a linear operator T of a Banach space X 
is continuous if there exists a positive number 11 TII such that 

IITxll~IITllllxll XEX 

the geometrical meaning of which is that the copy of the unit sphere 
{x: 11 x 11 ~ 1} belongs to the sphere with center e and radii 11 T 11: {Tx: 11 Tx 11 ~ 
~ 11 T II}. For this reason, continuous linear operators are often called bounded 
linear operator. 

Obviously, if Tis continuous, then the corresponding system is BIBO but 
the converse is not necessarily true. It may happen that 11 Txll < CfJ if Ilxll ~ 1, but 
walking all over the unit sphere with x, the 11 Tx 11 should be arbitrary large. 
Thus, there is a serious gap between the physical and mathematical description 
of BIBO systems. In the mathematical model of time-invariant systems the 
theory of continuous linear operators is applied, however, the operator T 
corresponding to a BIBO system is not necessarily continuous. 

The purpose of this paper is to fill the gap. It will be shown that under 
certain additional conditions, which a "real" system always satisfies, a shift
invariant linear T is continuous. 

2. There is a more deeper motivation of the automatic continuity 
problems (e.g. which was raised in the previous section). The subject of the 
(linear) functional analysis is the bounded operators and the closed operators. 
If an operator is neither bounded nor closed, then functional analysis is of 
little use. Recall, that an operator T in a Banach space X is closed if from 
Xn E!?fi T (where !?fiT is the domain of T), xn-x and Txn-y it follows, that x E!?fi T 
and Tx=y. 

Obviously, every bounded operator T of X is closed, but there are 
important unbounded closed operators: 

I. The differential operator [Tx] (t): = :t x(t) in X = C[a, b] (with the 

uniform norm) is a typical example for for a closed unbounded operator. 
H. Every self-adjoint differential operator is closed. In general, every self

adjoint operator in a Hilbert-space is closed. 
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However, the Closed Graph Theorem tells us that an everywhere defined 
closed operator T of a Banach space X is a bounded operator. 

In the light of the Closed Graph Theorem, if the operator of a BIBO 
system is not bounded, then the results offunctional analysis cannot be applied 
and it is enough to prove that the operator of a BIBO system is closed. 

3. The main theorem. Let, X and Ybe Banach spaces of functions with 
support on the half-line ;1/ = [0, CIJ). In this case 

[U x] (t) = {x(t - T) if t - T E ;1/ 
r 0 elsewhere. 

Moreover, Tbe a linear operator from X into Yand the following conditions 
are satisfied for X, Yand T: 

a. X and Yare translation-invariant; i.e. if x E X, then U rX E X and if yE Y, 
then U rY E Y for every T E ;1/. 

b. Tis translation-invariant; i.e. Ur T= TUr for every T E;1/. 
c. Ur for every TE 0) is an isometry; i.e. IIUrxll=llxll and IIUryII= 

=llyllxEX,YE y. 
d. For the truncation operator P(J. 

IIP:xxll ~ Ilxll and IIPayll ~ Ilyll x E X, yE Y. 

where :x E;1/ and 

Theorem 

[ P " x] (t) = {x(t) if tX - t E ;1/ ° elsewhere. 

Under the above conditions the operator P:x T is continuous for any 
'Y.E;1/. 
Remarks 

I It is convenient that the input and output space is considered very 
different, however, for a "real" system X = Y. 

11 The norm-condition for the shift operator Ur means that the property 
expressed by the norm is also time-invariant. 

III The norm-condition for Pa. means, that the norm (e.g. amplitude, 
energy, power) of the truncated signal is not greater than the original one. 

IV It seems that the properties, expressed by the norm conditions for Ur 

and Pa. (T, tX E .9), are satisfied by any "reasonable" system. 
In proving the "Main Theorem" we need the following commutation 

relation 

P U = {UrPp- r if fJ-TE.9 
Pro elsewhere. 

3 Per. Pol. El. 27/2 
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The commutation relation (*) is obvious, since truncating at fJ the function 
shifted by r is the same as truncating at fJ - r and afterwards shifted by r. 
Moreover, if r"?;,fJ then PpU,=O. 
The proof of the theorem 

It will be proved, that if P (1. Tis an unbounded operator for any et E 1/, then T 
is not BIBO. 

If P", T is unbounded for any 'Y.. E 1/, then a sequence {xn; IIxnll <2-"} can 
be constructed in an inductive manner as follows: 

liP" 1\:111> 1 

11P2 TX211>2+IITxll1 

n 1 

IIP"Txn ll>n+ I. 11 Txdl 
i= 1 

Let N be an arbitrary positive number and 
00 

Xo = I. U n(k)Xk 
k=1 

where n(k) E 1/ and n(k+ 1)-n(k»'Y.. for k= 1, 2, ... then Xo E X and it will be 
shown that 11 Txo 11 > N. 

and 

If fJ = n(N) + et, then 

n{N)<fJ<n(N + 1) 

11 TXoII"?;,IIPp Txoll =IIPp T( :t: Un(k)Xk ) + Pp TUn(N)XN+ 

+Pp T( f Un(k)Xk); 
k=N+ 1 

for the first member in the right side 

for the third member in the right side 
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= Pp U n(N + 1) Tx N + 1 + Pp U n(N + 1) T( f ... ) = 0 
k=N+2 

since PpUn(N+l)=O, by the commutation relation (*). Thus, it is obtained 

(**) 1/ TxolI~//Pp T( :t: Un(k)Xk)+Pp TUn(N)XN// ~ 

And now we arrived to the decisive part of the proof: 

IIPp TUn(N)xNII = I/PpUn(N) TXNII =1/ Un(N)PP-n(N) TXNII = 

= 11 U n(N)P a: TXN 11 = 1/ P Cl TXN 11 

hence, it follows from (**) and the inductive hypothesis for {xn} 

IITxoll~IIPa:TxNII - ~tllIITXdl~( N + ~tllI/TXdl) - ~tllI1TXdl=N 
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3. Conclusions and further problems. It follows from the foregoing 
theorem that if the operator T is composed with any truncation P a: then the 
result, P a: T, will be a bounded operator for any reasonable T. 

At least in two cases, the boundedness of P a: Tfor every ex E 9 implies that 
T is bounded: 

Proposition 1 

If lim Pa:Tx=Tx for every XEX, then Tis bounded. 

Proof 

It follows from the Uniform Boundedness Theorem ([1] H. 1. 11.) or 
even more, from the Banach-Steinhaus Theorem ([1] H. 1. 18.) that T is 
bounded since Pa: Tis a bounded operator for every ex E 9 and IIPa: TxlI ~ 11 TxlI 
for every x E X. 

Proposition 2 

If T maps truncated function into truncated function, then Tis bounded 
on the subspace of function, with compact support. 

3* 
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Proof 

If Tx is truncated by f3 E &, then 

P" T-x= Tx 

for':!. > f3 and hence, the condition of Proposition 1 is satisfied for any x with 
compact support. (Every x with compact support can be considered as a 
truncated x E X and vice versa). If X ° is the closure of functions in X with 
compact support, then P" Tx-+ Tx and 11 P" Txll ~ 11 Txll on a dense subspace of 
X ° and the Banach-Steinhaus Theorem can be applied (see [1J n. 1. 18). 

Now let X and Y be any translation invariant Banach space of time
functions. That is, there is no restriction to the support ofthe functions in X resp. 
Y In this case it can be concluded from the Main Theorem, that the causal 
translation-invariant linear operators are bounded operators. More precisely: 

Let X and Y be translation-invariant Banach space of functions on the 
line (- cc, + cc) and Tbe a linear operator from X into Y 

Proposition 3. If 

a. the functions with support bounded below are dense in X and T is 
causal (i.e. if supp x s:; et, :x:.) then supp Tx s:; r t, cc)); 

b. the conditions b., c. and d. of the Main Theorem are satisfied; 
then the operator P" T is bounded for every':!. > O. 

Proof 

If P" T is unbounded on the dense subspace 

Xb: ={X:XEX; suppxc[to,cc); to>-:::C} 

then, as in the proof of the Main Theorem, a sequence {xn; Xn E X b , Ilxnll <2- n
} 

can be constructed in an inductive manner such that 
n-l 

IIP"T.xnll>n + I IIT\:dl· 
i = 1 

Let N be an arbitrary positive number and now 
x 

Xo = I Un(k)+tkXk 
k=l 

where tk;;;;O such that supp xks:; [ - tk, cc) and n(k+ 1)+ tk + 1 - [n(k) + tkJ > ex 
for k= 1, 2, .... 

It follows that XoEX since Ut is an isometry and Ilxkll<rk. It will be 
shown that 11 Txo 11> N. 

Similarly as in the proof of the Main Theorem, if f3 = n(N) + tN + ex, then 

n(N)+tN<f3<n(N + 1)+tN+ 1 
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and for the same reason 

hence, again 
N 1 

11 7:xo 11 ~ IIPp TUn(N) + I:vXN 11 - I 11 7:xdl 
i= 1 

For the first member of the right side 

11 Pp TUn(N)+tNXNII = 11 Un(N)+tN Pp [n(N) + l:v] TXNII = liP" 7:xNII 

hence, it follows from (**) and the inductive hypothesis for {xn} 

11 7:xolI ~ liP" TXNII - ·~tll 11 7:xdl ~ (N + i;t1 

11 7:Xdl) - i;t1
1 

11 7:xdl = N. 
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Thus it is proved: (by the principle of indirect proof) if Tis causal and BIBO, 
then P", T is bounded on X b' 

As Proposition 1 or Proposition 2, it can be proved 
Corollary 

If lim PI!. Tx= Tx for every x E Xb then Tis bounded on X b. (And hence 

there is a unique bounded extension of T onto X.) 
The linear space {x: x E X supp xc [to, ::tJ); to> - oo} can be considered 

as the inductive limit of the linear spaces Xl: = {x E X: supp x ~ et, :e)} with the 
norm inherited from the Banach-space X. Recall, a sequence {xn} is convergent 
in the inductive limit of the Banach spaces Xl if there is a fixed t such that Xn E X t 
(n= 1, 2, ... ) and {xn} is convergent in the Banach space Xt. 

Since T is causal if and only if TXt~Xt for every t and T is continuous in 
the inductive limit of the Banach spaces X t if it is continuous in every Xl' it is 
more convenient to consider T as the operator of the inductive limit of Banach 
spaces Xl: = {x E X, supp X~ [t,oo)} then to consider X as a Banach space itself. 

In a forthcoming paper we shall deal with "automatic continuity" of 
causal shift-invariant linear operators in this more natural setting. 
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