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Summary

This paper presents a class of spline approximation method for the numerical solution of
retarded ordinary differential equations’ (RODE). The proposed method is explicit, for
convergence we need several restrictions and assumptions on the right side of the RODE. For
other application of spline functions see [1], [2], [3]. A scheme for constructing methods of
arbitrary orde: and numerical examples is given.

Introduction

In recent years there has been a growing interest for the numerical
treatment of delay differential equations. This is due to the versatility of such
equations in the mathematical modeling of processes in various application
fields, where they provide the best and sometimes the only realistic simulation
of observed phenomena. In difference-differential equations (DDF), or more
generally, in functional differential equations (FDE) the past exerts its influence
in a significant manner upon the future. For general treatment of FDE and for
their history we could refer to the book of Hale [4]. Nevertheless the numerical
methods which deal with this kind of equation were not developed so far. Cryer
and Tavernini [5] studied the Cauchy problem for Volterra functional
differential equations:

y'(t)=F (y,1), tela,b]
(1.1)
y(e)=g(1), tela a]

Here, F: C([o, b]—E™ X[a,b]—E" is a Volterra functional, that is, F(y,t)
depends on t and on y(s) for s> ¢; and the function g € C([«, a]— E") is specified
initial function.

The problem (1.1) includes as special case the initial value problems for
ordinary differential equations (ODE), retarded ordinary differential equations
(RODE), and Volterra integro-differential equations (VIDE).
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Numerical method for solving special cases of (1.1) has been considered
by several authors, Feldstein and Goodman [6], Bleyer [7], Bleyer and Preuss
[8], Tavernini [9], Kemper [10], Oberle and Pecsh [11].

Description of the method

We consider a RODE in the form
V(x)= f{x, y(x), f(x))),  xe[a,b] 2.1)

Va)=y, and afa)=a (2.2)

where o(x) < x, y(x) is an unknown function. The function a(x) is usually called
the “retardation” or “lag” function. Generalizations to multiple lags are carried
on in the obvious way:

Let us denote d’y/dx’ by y¥; if ¥V is continuous at x;(x; € [a, b]), we
denote it by y¥. The notation y! will be for the left-hand limit of y* at x,, when
yY is discontinuous at x; and sometimes, for convenience, even when yV is
continuous there. The solution of the problem (2.1) with (2.2) is denoted by v(x).
fY stands for the higher derivatives of y'(x).

Choosing h* >0, define af = a+ h* = x,, then we define the algorithm on
[a, a§] by using Taylor’s expansion as follows:

Let us start the algorithm by

with-

YO = ya)=y, (2.3)
YW= fU (g O 00 1 <i<y (2.4)

where m is fixed integer.
For x €(q, a¥], y(x) is given by formula

Jo) = ¥ o [e—alt 23
K=o k!
we define for 0<j<p
0 ‘Z AR (2.6
= 7 Ya .
e & )
where 0=p<m—1, and for p+1<j<m
9= £97 Vs, 90, 1D) @7

~—

where y'¥ can be calculated from (2.5

m

y(efxo)) Z

k=0

Y [a(xo) — al* (2.8)

??‘ip-—
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and the higher derivatives

m

4 1 oy
YW axo)) = k; T ¥ [axg)—al* ™/ (2.9)

we continue the algorithm in term of “mesh points” x, and “non mesh points”
afx,) defined as follows.

Let us Pick #>0 and integer N so that Nh=b—aj, denote x,=a¥ + nh
for n=0,1, ..., N. Let us define

af = max {xj/xj>a} ;;a(x,)<af | for k<jSN} (2.10)

It may happen that the procedure defining the numbers a¥, which are always
mesh points, terminates before af = x, =b. In this case let the last defined a¥ be
denoted by x; and by definition let af, , = x; ;. Since #(x; ) 2 af we could say
that in the interval (x;, x;. ;) we have no delay and «(x) >~ x can be assumed. By
assumption x(x)< x on [a, b], the sequence af is finite, the possible number of
af—s is at most N.

The algorithm now will be defined first on (a§, at], then on (a¥, a%] and
soon. If x, € (af, a¥] then by (2.10) x} = a(x,) < af. Let x; € (af, a¥] dnd define
for 0sj<p

) m hk—j
W= 3 gt @1
where 0<p<m—1 is fixed. If p+1=<j<m then by (2.5) and (2.7)
Y = fU=D(x, YO v‘o.’) (2.12)

is well — defined. For x € (a¥, a¥], y(x) is given by formula

1

y(x) = Z‘)gf) 1) [x—x; 1]k (2.13)

n[\/]s

where x,_; <x=<x;.

In the next step we move to the interval (af, a3 ], a3 <b. If x, € (aF, a}]
then a(x)) € [a, a¥], if 2(x)) € (ad, aF], then we need the approximation of v(x(x,)).
y‘o’ will be counted from (2.13)

Hobx) =19 = 3 ot )=, T (.14

whenever x;_; <a(x;)<x;. In the case «(x;) € (a, a§] then y’ is given by (1.5) at
x =ua(x,). Higher derivatives can be get similarly from j-th derivative of (2.13) at
x =0u(x,) or respectively from the derivatives of (1.5) evaluated at x=a(x,).

m

1 .
W)=y = 3 & ol Ty V& [alx) —a]* (2.15)

(k=)
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and
, . m 1 .
YN a(x)) =y = ; &= vy Do) —x; -4 1% (2.16)

for x;_; <u(x)< x; and for 0 <j<m. Hence similarly to (2.11) and (2.12) for
O=j=p
m hk j

B = i 217
i kz_] (k ])' Yi- 1 ( )

where for the smallest [, x,_, =af,
Y= fUTD(x,, yO, ) (2.18)
when p+1<j<m. By the assumption on a(x) the algorithm terminates in at
most N steps, if we repeat the above method for (af, a%], . . . . Obviously (2.11)

is the j-th derivative of (2.13) evaluated at x;. Therefore y(x) € C?[a, b] while the
(p+ 1)-st through m-th derivatives of y(x) generally have finite jumps at the
mesh points, the values given by (2.12) (or for the next interval (a}, a%], by
(2.18)) being left-hand limits of these derivatives of y(x).

Convergence

We begin this section with five lemmas which will prove useful in the
following convergence (for to proves see [12]).

Lemma 1
Ifj, p and r are non-negative integers and h and «, are real numbers, then

(rh)k iopitk w
& k= =Ry T Eg; Gy &

Lemma 2
Let ¢;;, n;,; and B, ; be real numbers which satisfy
hk—i m ki pmoitt
T L R B G T 1)
for 0Zj<p, 1 <i< N. Then for any integer g such that 1 <g<i

Ul § (=D h
"iwfr“q i[f ww!u—wm*l'

k=jl=p+1

_ i [ f: ((r...l)h)" j opm-k+1 ﬁ ]
SLE k=) =k

for0<j=p, 1sizn

ﬁjll
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Lemma 3

Let j, p, | and r be non-negative integers, and let h=0 be real. If ISp<j
and r=1, then

N ) i )
& k=) U=k = A=)

Lemma 4

Let g=0 and r=1 be integers. Then

i

Z rigpEtt

r=1 -
Lemma 5

Let a; be real numbers and C and D be non-negative real numbers
satisfying the recurrent inequality

i—1
<D Y loyl+e
k=0

Then the following bound holds
lai|§ceﬂ)7 lgo

Let us consider the errors on the interval (a, a] (ad =x,).

&o=Yo — v}, O0<k=p (3.1
Moo=V —v®  p+1gksEm (3.2)
Between (a, a§) we obtain by Taylor expansion
) = i e (k) h*mtjﬂ pmEDE . 3.3)
= Jtfk——])' (m—j+1)! e

where a<¢; ,<a,.
From (2.6) and (3.1) it follows that

i hERJ m ki hEmM—i+1 S 0 3.4
8],0 - k=jik—::i)—!8k.a + k:;-F (k""])' ”k a(m J+1)' (gj.a) ( . )

for 05j<p.
Since & ,=0 and 7, ,=0, we get
h*m—j+l

W=+ o™ D) (3.5)

8j,0= -

Assuming
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sup [0 VSV, ., (3.6)
fa.b]
then
wm—j+1
SV )

For the continuous error bounds, by Taylor expansion of y(x) and v(x) on
the right-side end of (q, a§] we can obtain for 0<j<m

sup ly(J) _DU | < ﬁ: V. (3.8)
[, a8} = m—j+ 1
Assuming 0<j<p and set '
5 () hg=i*! 1.9
01(10)—m m+1 (3.9)
sup V) — v S S {ho)h*m P (3.10)
by taking h* <h,.
For the case p+1<j<m, we have
Vins 1
_]{ho) ( J+ 1)
Then for p+1<j<m
sup |y — v S 8;(hg)h*m 1 (3.11)

[a.a3]
Now we have given the error bound for #; , as follows
— fU-1) . ; 5 - (. bl
’71,0‘“fU (X0, Uo+ 80,05 Usy + &2, 000(o)h*™ P) = fY7 V(x4 vg, Usg)

for p+1=<j<m, where 0<|e, o/ < 1.

Therefore by the virtue of the mean value theorem:

-

c .
— -1 . 0) (0
ﬂj,O""SO.anfJ (anﬁj.OUO+(1_ﬁ )}5 )ay(zo)+

5
+ 840 o Oolho)h*™ 7P — fU~ 1)(X0vb0 V5.0 Uz (1 —7;, o)y(o))

0.0 0

where 0<f; , and 7; o< 1.
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Using the following notation:

¢
F§.10> = Efu Y(xq, Bjovo+(1 "ﬁj.o)y(oo): yiﬁ;
. ¢
F§.?>>= g;fu N(xo» vos 75,0020+ (1 =7;5.0) Vo)

we can write
_ 1 s —p <2
Uj.o—ﬁo.on',o)+€aooo(ho)h*m pF§,0>
Assuming
ZFil <MSP, sup <M
- — Jj £ i
oy D

‘..
)
=/ =

sup
D

then by (3.13)

Iﬂj 0!—!80 0!M<1> +00(h )h*m pM E
set M ;=max {M{", M{®}.
Then for p+1<j<m

b

(150l S[eq, ol +0olho)h*™ " PIM;_,
From (3.7) and (3.9) we have

le;.ol=0(*""F)  O0=Zj=<p
and
[7;,0l=0(h*""F)  p+1<jsm

Now let us consider the errors on the mesh points of (af, af]
g =w"—uvl,  0<k<p

M=y =i, prisksm

Between mesh points (x;_,, x;) we obtain by Taylor expansion

~ m hk—j (k) hm—j+1 .
) - N — LR
U; kZJ (k ___J)' Uity (m"‘_]+ 1)' (gj.l)
where x;_; <¢&; -, <x;.
From (2.11) and (3.19) it follows that
Wi m k‘i
&; i= e £ i- '+' i—
M k=TT Z:H k—j) it
hm—j+1

__ mt 1oz
(m___]+1)'v (Cj,l-l)

129

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
(3.20)

(3.21)

(3.22)
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By applying Lemma 2 and by using (3.5) one can obtain

p (lhk i hm—k+l
..::—- {m+ 1) =
Z‘ (k= (m—k+1) v (Cea)t

i m ___lhkj’lk
AP e

r=1 T ! (I—k) Li-r
N (V) i
A L,- G mkri . Cnis J] (3.23)

for0<j<p, 1SiZN.
To obtain some estimation for ¢; ; we must have some bounds for 7, ;

nj.s=f‘j"’(x-. D+ €0, i» Vg, + £, 00 (ho) H™ 7P) —
‘ufj"l(xi’ U,-,U =&0,i a f(J ”(xn ﬁ] i z+(1—'ﬁ1 :)}’fo)a y;O))"*“
+&,,00(ho)h™” p__fu D0, 035 7.0+ (=750 9)

where 0< §; ;,7;:<1,0=<]e, | £1 with notation similar to (3.12) and (3.14), and

by applying Lemma 3, we obtain for 0<j<p and
{i/liN,x;€ (a3, at]}
( h*)m j+1 . (zh)m j+1

P At Ja |
l]ll-“ m+1( +1)' (!+1) +Vm‘\“1 Z nl~_]+1)'r +

_ (3.25)
S (oo M+ S0 o)™ M, Q’—‘?————r}
4 l=p+1 Q.i—r -1 4] (1—_])!
Denoting I, ={i/1 i< N, x; e (a§, a}]} then by applying Lemma 4 we get
(Zh)m‘j+l ) . (Zh)m—j+!
<V, = p-J =
‘j.l'_ m+1(m___j+1)!(l+1) +Vm+l(m__j+1)!

. -
+ max |go  |i# 7Ty Zh) M<l>

1 I=p+1

ity

. m 2h)l i
gm—pip—j+1 ( (2>
+do(hg)h i oy g M
From (3.25) taking j=0, since r* £ i¥, we obtain

(3.26)
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(th+1 Zh)m+1
+Vm+lm pra G

m !
+ 3o (ho)h*m PP+ 1 [ Yy M (-21’)—] (3.27)

In order to write (3.26) and (3.27) in a denser form we introduce the
notation

A b p—i S 15 zl*jhlo—l"l 32
i=(b—a)f~ M2y —— .
i ( a) I=§+l -1 (l"’j)! ( 8)
1 m=jti ) om=j+1
(b — Pty b—ay¥ iv. . . 2P —
BJ (b a) m+lm""j+l +( a)p mﬂ-lz (m“‘j+1)!+
i m 5 zl‘f
+b—af I 8o (he) Y M{E S hg P! (3.29)
1=F+1 (1=
Now taking h<h, and h=max {h*, h},
i<N= 2=
i—~1
leo. | SAoh ). lgo, |+ Boh™ 7 (3.30)
r=0
by applying Lemma 5, (3.30) implies
|eo,i| S Boh™Peido < B e® =0 Aopm=p (331)
therefore
fe; | S[Boe” %44 (b—a)+BJA" ?=0(h""7) (3.32)
for0<j<p,iel,, and
Mj.i|§[30.ilM§'i>x +60(h0)h-m_pM§g>l .
set M;=max {M{", M{®’},
then ,
I'Ij,il §Mj- 1 [Boe(b-aa)Ao'*’ 5o(ho)ﬁm-p=0(hm-p) (3.33)

Now we give the continuous error bounds on (a,, at]. By Taylor expansion of
y(x) and v(x) on the right end of each subinterval (x;, x;, ;] of (a}, a?] we can
obtain for 0<j<m
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max {sup {|yd— o)l [xi x5 Q1 SIS -1}

i mo ki it
s —max g ;| + max it = Vs
T =ik =) er, el k Zﬂ — W ier; .l (m—j+1)! !
(3.34)
Assuming that 0<j<p and set
hg—j x
Mj(h)= 3. 0 [Bro-9104,(b—a)+ B,] +
k=i (k—j)!
3 ___h’(‘,'j M, [Boe® ™ ™40 15 (ho)] +
Y T °
g 3.35
+ m—j+1) Vins1 (3.35)
one gets for 0<j<p
sup |y9(x) — v (x)| < Mj(ho)h™* (3.36)

[ag. a8l
For p+1<j<m, M;(ho) is different from (3.35) since in this case the last
term of (3.34) gives the essential part to determine the error bounds:

k—-p+1
h Vm+l

(M (ho)= Z M- [Boe® ™% + o (ho) + (m—j+ 1)

=i (k=)
Then for p+1<j<m
max {sup {|y9(x) = o09(x):[x;, X; 1)1 i 1, = 1} SM ) A" ~9* 1 (3.38)

(3.37)

Now we are able to give error bounds whenever our procedure is
continued to next steps (a,, a,), ... and it is obvious that the same error
bounds could be obtained as (3.32), (3.33) (3.36) and (3.38).

For given €,,€,>0,h, can be chosen such that §y(ho)hf P and
M(ho)hg P <e(e=max €, €,). This implies that y(x)—v(x) in Ghebyshev
norm on [a, b]. Since 4; and B; are independent of &, §,(hy) and M jlho) are
bounded. Hence 50(110)}10.,0 and My(hy)hg F—0 as hy—0.

We can summarize our results.

Theorem

Let the function f(x, y,z) be k-times continuously differentiable with
respect to x, y, z in same domain D of (x, y, z)-space (k= 1). Let us assume that
a(x) € C* [a, b]. The restriction of D into (x, y) — space will be denoted by D, .
Let us assume that D, contains the exact solution v(x) of the RODE on [a, b],
so that v(x)e C*"'[a,b]. Let 1=m=k and 0<p=<m—1. Then there is hy>0
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such that the algorithm producing the spline function y(x)e PC™? [a,b],
satisfies the discrete error bounds

max |y (x)—vP|SL;F"P 0Zj<m (3.39)

0<isN

Moreover, y(x) also satisfies the Chebyshev error bounds

sup [ y(x)—v(x)| S Ly(ho) A" "7

Xefa,af] (340)
sup | yV(x)—v(x)| < M;(ho) ™7,
T ogis
sup [y9(x) ~ 10 | S L o) "I+
e (341)

max sup Iy(j)(x)"v(j)(x)léMj(ho)h‘m“j'*'l ,
1SiSN (Xi-1.X0)
p+1Zjsm

where L;, 6;(ho), M (h) are given constants.

Numerical Examples

To illustrate convergence, we applied the method to the following
examples.

Example 1
Yx)=2y(/x) y()=1 1=x52

which has the exact solution

Example 2

y(x)=

YRS

1— y*(sin x)
which has the exact solution
y=arcsin x .

Theerrors for h=0.05,m=3, p=2 are tabulated in Table 1, for example 1
and in Table 2, for example 2.

4 Per. Pol. El. 27/2
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Table 1

h=005 m=3 p=2

B e

[N

-

. Kemper, G. A. “Linear multistep methods for a class of functional differential equations.’

v exact solution o approximate solution

~ ¥ Yooy y v Yy Y

il 121 2.2 20 0.0 1.21 22 20 —0.00003

1.2 144 2.4 20 0.0 1.44 24 20 —0.00002

£3 1.69 2.6 2.0 0.0 1.69 2.6 20 0.0

14 1.96 2.8 20 0.0 1.96 2.8 20° 0.00001

L5 228 0 20 0.0 225 3.0 20 0.0

Table 2
h=0.05 m=3 p=2
. appr. sol. error
X I —
A ¥ ¥ ¥ v
0.1 0.100 168 00 0.000 000 58 ~0.000424 33 -0.006 833 70 —0.06348575
0.3 0.30479035 -0.00009700 ~0.001 198 56 ~0.009 35149 —0.170047 52
9.5 0.52425301 ~0.000634 23 —0.005179 53 —0.03243105 —0.67401591
0.7 0.778 204 89 -0.00287387 -0.01769241 —0.04298330 -0.94177484
(4.9 1.119769 35 0.005 68089 0.290 33550 7.03998204 159.625 309
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