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Summary 

This paper deals with the problem of designing a precompensator. by using the frequency 
domain approach. for systems which have weak inherent coupling. A necessary and sufficient 
new condition for decoupling is given which is the basis of the first algorithm suggested to 
achieve dynamic decoupling. Another algorithm is presented. for the same purpose, by making 
use of the interactor matrix idea. For each method all the poles of the precompensator can be 
assigned arbitrarily and the construction does not depend upon the control law used. 

1. Introduction 

The problem of decoupling was introduced by Morgan [6J about two 
decades ago. Falb and Wolovich [4J were the first to give the necessary and 
sufficient condition for decoupling by using linear state variable feedback 
(1.s.v.f) alone. Gilbert [5J made a broad extension to their results, while Morse 
and Wonham [7J discussed the problem by using the geometric approach, and 
they introduced new classes of decoupling such as triangular and block 
decoupling. 

Algebraically a proper, right invertible system can be dynamically 
decoupled by using 1.s.v.f. alone if B* (for definitions see § 2) is of full rank. 
Sometimes this condition is not satisfied and even the system is right invertible. 
In this case Gilbert [5J said the system has weak inherent coupling. The 
problem of designing a precompensator for systems having weak inherent 
coupling was studied by Cremer [3J, Panda [8J and Sinha [10J by using the 
time domain approach, and in the freqency domain by Wolovich [12]. 

Wolovich invertible decoupling algorithm (Wolovich, [12J) yields a 
minimal order precompensator (or input dynamics), whose dynamics are 
governed by both the open loop system (o.1.s) transfer function matrix, and the 

* On leave from the Electrical Engineering Department, Assiut University Egypt. 
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desired closed loop system (c.l.s). Due to this constraint some practical 
problems of compensator design may arise, such as undesirable valued modes 
or even unstable ones. Moreover, the algorithm is derived by using l.s.v.f, and if 
an output feedback control law is desired for decoupling (see, e.g., Wolovich 
[13J and Bayoumi et al. [lJ) other techniques are needed. 

In § 3 and § 4 of the paper we present two methods for precompensator 
design such that the system after precompensation does not have weak 
inherent coupling (B* is offull rank). The first algorithm is based on a necessary 
and sufficient new condition for decoupling in Theorem 1. The second 
algorithm makes use of the interactor idea. An introductory scientific material 
is given in § 2. 

2. Preliminary definitions and basis 

In this section the definitions and the theoretical basis needed in § 3 and 
§ 4 are summarized. The symbol < . ) is used to denote diagonal matrices. 

Definition 1 Gilbert matrix and indices. + 

For any p x m proper matrix T(s) which has no zero rows we define the 
Gilbert index, dii of the ith row ofT(s) as the least non negative integer for which 

lim Sdii[tij(S)] 1 x m is finite and nonzero. We shall call the diagonal collection of 
s-+ 00 

such s-powers, D(s)&: <iii); i = 1. ... , p, the Gilbert matrix. We use the 

notation B* &: lim D(s)T(s). 
S-+ 1'1J 

Definition 2 Column (row) proper polynomial matrix with respect to (w.r.t.) 
some indices. 

We say that a p x m polynomial matrix R(s) is column (row) proper W.r.t. 
some set consisting of m(p) index elements, if the scalar matrix whose columns 
(rows) consist of the coefficients of the s-powers corresponding to those indices 
is of full rank. 

Definition 3 Column (row) proper polynomial matrix R(s) is called column 
(row) proper if the index set in Definition 2 consists of the column (row) degrees. 
The scalar matrix of the coefficients is denoted by re [R(s)J (rr [R(s)]). 

Example 1 

[

S2 + 1 s ] 
R(s)= s+2 3s2+1 

is column proper W.r.t. the following set of indices: (0, 0), (0, 1), (0, 2), (1, 1), (2, 0) 
and (2, 2). However it is not column proper W.r.t. the following set of indices: 

+ B* was defined first by Falb and Wolovich in 1967. Gilbert gave the frequency domain 
definition and interpretation in 1969. 
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(1,0), (1,2) and (2, 1). It must be noted that R(s) may be column proper w.r.t. 
some indices but not row proper for the same set, e.g., R(s) is column proper 
w.r.t. (0, 1) while it is not row proper for the same set. 

Definition 4 Linear state variable feedback (1.s.v.f). 
For a proper system, whose input-output behaviour is described by the 

p x m transfer function matrix, T(s)=R(s)P-l(S) with R(s) and pes) relatively 
right prime (rrp) and pes) column proper, the l.s.v.f. is defined as the control law 

U(s)= F(s)Z(s) + GV(s) , 

i.e., the pair {F(s),G} for which the closed loop system TF.ds)=R(s)[P(s)­
- F(s)] - IG satisfies, 

oclP(s)J = OCj[P(s) - F(s)J and 

re [P(s)J = rc[p(s)- F(s)J 

where Z(s) is an m-vector representing the partial states, U(s) is an m-vector 
representing the control signal, and Yes) is an m-vector representing the input 
signal. 

Definition 5 Dynamic decoupling 
A linear multi variable system is said to be dynamically decoupled if its 

transfer function matrix is diagonal and nonsingular. If the o.1.s. input-output 
behaviour is given by a p x m proper transfer function matrix T(s), then we say 
that the system is decouplable through l.s.v.f. ifthere exists a pair {F(s), G} of 
dimensions m x m and m x p respectively; and G of full rank p, such that the c.l.s. 
T F.ds) will be a p x p nonsingular diagonal transfer function matrix. 

We shall also make use of the following known theorems, 

Wl. Wolovich's first theorem (Wolovich [12J, p: 288) "A linear multivariable 
system characterized by ap x m proper transfer function matrix T(s) can be 
decoupled by input dynamics (precompensator) in combination with l.s.vf. if and 
only if it is right invertible." 

M. Wolovich's second theorem (Wolovich [12J, p: 296) "A system with a 
proper, right invertible p x m transfer function matrix T(s) can be decoupled via 
l.s.vf. alone if and only if there exists some constant m x p matrix G such that 
B*(T(s)G) is nonsingular." 

In light of Wl we assume that we have a right invertible system T(s), and 
our aim in § 3 and in § 4 is to design a precompensator Te(s) whose poles may be 
arbitrarily chosen such that B*(T(s)Tc(s» is of full rank. 
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3. A new necessary and sufficient condition for decoupling 
and its application for the precompensator design 

In this section we give a new necessary and sufficient condition for 
decoupling a right invertible system expressed in the matrix fraction right 
description (MFRD) form. Then we construct an algorithm to achieve 
decoupling by making use of this theorem. The following lemmas are needed to 
establish Theorem 1, and they can be easily proved. 

Lemma 1. "If T(s) = R(s)P -1(S) is a proper rational function matrix, then 
ocj[R(s)] ~ ocj[P(s)J, "1/' 
Lemma 2. "IfT(s) = R(s)P- 1(S) is a proper rationalfunction matrix, and D(s) is its 
Gilbert matrix, then ocJD(s)R(s)] ~ ocj[P(s)], "1/' 
Theorem 1 

"A system described by a p x m, right-invertible, proper transfer function 
matrix T(s)= R(S)P-1(S), with R(s) and P(s) rrp and P(s) column proper, can be 
decoupled by l.s.vf alone, if and only ifR(s) g D(s)R(s) is column proper w.r.t. the 
column indices of P(s), where D(s) is the Gilbert matrix ofT(s)." 

Proof 

Since P(s) is column proper, its adjugate matrix B(s) must be row proper 
(Lemma 1, [15J). Let R(s) and P(s) be the p x m and m x m irreducible matrix 
fraction description as we assumed by rrp constraint, then the system degree 

m 

"n" is equal to the determinental degree ofP(s), i.e., n = L oc j' where cCj is the 
j= 1 

jth column degree (or index) of P(s). The i-th row index of B(s), ori' is equal to 
m 

L cCj • B(s) can be expressed in the form: 
j= 1 
j'i'i 

(1) 

where Bo is an m x m nonsingular matrix, which represents the coefficients 
corresponding to the row degree, 

I g max {crJ, i= 1, 2, ... , m, (2) 

81- k(S) is an m x m diagonal, polynomial matrix having the form: 

S- ()£;;,.( or,-k Cr2- k crm-k> k-O I 1 l-kS- S ,s , ... s ,- , ... ,- (3) 

and the elements of Bi corresponding to negative s-powers are zeros. 
To prove necessity, we assume that the system can be decoupled through 

l.s.v.f. alone, i.e., there exists a pair {F(s), G} of dimensions m x m and m x p 
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respectively, with Dcj[F(s)] < CCj[P(s)], Vj' such that the c.l.s. transfer function 
matrix is given by: 

T~!G = R(s) [P(s)- F(s)] -IG (4) 

= Td(S) 

where Td(S) is the desired p x p nonsingular, diagonal transfer function matrix. 
Premultiplication of both sides of equation (4) by the Gilbert matrix D(s) of 
T(s) yields: 

D(s)R(s) [P(s)- F(s)] -IG =D(s)Td(S) 
Now, let: 

R(s)~ D(s)R(s) (6) 

By writing equation (6) in the column proper form we have: 

(7) 
where 

S~ () - < CCI - k .CC2 - k Jo." - k> k - 0 1 I· h-kS- S ,5 , ... ,5 , -, , ... ,<1 (Sa) 

h~max {cc),j= 1, 2, ... , m (8b) 

and DCj is the jth column degree of R(s). It follows from Lemma 2 that 
DCj -;£ cCj , Vj' By taking the limits of both sides of equation (5) and usmg 
Theorem W2, Definition 1 and Definition 4, the R.H.S. gives: 

lim D(s)Td(S) = B*(T(s)G) = B*(T(s»G (9) 
s~x 

with B* of rank p from the assumption (p -;£ m follows from the right invertibility 
of T(s». 

By making use of the constraint ccj[F(s)] < ccj[P(s)], Vj and the form of 
equation (6), the L.H.S. gives, 

lim {D(s)R(s)[P(s}-F(s)] IG} lim {RoSh(S)~~(S)BoG1 (10) 
s~ x s~x s J 

Now let: 

(1) 

From Lemma 1 it follows ccj+n-ccj-;£n. Equation (10) may be rewritten as: 

L.H.S. = lim {RoSh+I~S)BoG}, (12) 
S-"" 'x S 

and since lim Sh + ~(s) is finite, another form of equation (12) may be: 
S-Cfj S 
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(13.a) 

(13.b) 

From equation (9), the rank of the above equation must be equal to p and the 
Sylvester's inequality gives: 

q ~ rank (lim Sh+~(S)) f;P, and (14) 
s"" 00 s 

(15) 

Equation (14) means that there are at least q columns ofSh+l(s) of degrees equal 
to "n", or equivalently, q-column indices ofR(s) are equal to the corresponding 
ones in pes), and by combining it with equation (15), give that R(s) is column 
proper W.r.t. column indices of pes). 

To prove sufficiency we assume that R(s) is column proper W.r.t. the 
column indices ofP(s). It follows from Lemma 2 that there exist at least p indices 
i l' i2 , ••• , ip satisfying OCik = OCik' k = 1, ... , p, and the corresponding columns 

ofRo are linearly independent. Hence Ro (lim Sh+~(S)) is of rank p. Since Bo is 
s .... 00 s 

of rank m, it follows from the Sylvester's inequality that Ro (lim Sh + ~(S)) Bo is 
s .... 00 s 

f ., f - (1' Sh+l(S)) o rank p. Let G be the nght mverse 0 Ro lm n Bo, then 
s .... 00 s 

Ro(lim Sh+~(S)) BoG=B*(T(s)G) is nonsingular and T(s) can be decoup1ed 
s .... 00 s 

via l.s.v.f. alone by Theorem W2. 
Q.E.D. 

Corollary 1 
"A proper invertible system (p = m) can be decoupled by l.s.v! alone if and 

only ifR(s) is column proper and oCj[R(s)]=oCj[P(s)], V/ 
Example 2 . 

Consider the following, proper and right invertible transfer function 
matrix, 

[ 5+1 
1 

<21~ T(5)~ : 
s+1 

0 
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[ ~ 
0 

,~J! ~ (':1 1 ~] s+1 
0 

0 '-v-" 
R(s) , 

y 
I 

P-l(S) 

The Gilbert matrix is 

D(s)= [~ ~J and B*= [1 0 0J 
000 

and the column indices are: 8c 1 = 8c 2 = 8c 3 = 1. By using the suggested theorem, 

R(s)=D(s) R(s)= [s+ 1 1 IJ 
s 0 0 

d h . d' {Ill} r(l.l.ll_[1 0 0J h' h' I B* d an w.r.t. t e III Ices " 'e - 1 0 0 ,w IC IS equa to an 

'\ each one means that an input dynamic is needed to achieve decoupling. 

Remark: From the above example, it is evident why we give the new definition 
of column properness w.r.t. some indices (Definition 2). If we use Definition 3, 

re = C ~ ~ J ' which will give an incorrect result. 

Since we used the irreducible (rrp) MFRD in Theorem 1, an important 
question arising due to this special form of description is how the system is still 
controllable and observable after compensation.* A partial answer to this 
question, and which will be used later, is given as Theorem 2. First we shall 
make use of the following lemma (Rosenbrock, [9J, p. 71) 

Lemma 3 
"IfR(s) and P(s) are two polynomial matrices of dimensions p x m and m x m 

respectively, with P(s) nonsingular, then {R(s), P(s)} are rrp if and only if rank 

[~{:~~-J = m, for all zeros So of I P(s)I"· 

* If T(s) = R(S)P-l(S) is a system transfer function and {R(s), pes)} are rrp, then T(s) 
describes a controllable and observable realization of the system [14], p. 440). 
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Theorem 2 

"Let {R(s), P(s)} be two invertible, rrp, m x m polynomial matrices. Then 
{R(s), P c(s) P(s)} are also rrp (where P c(s) is an invertible polynomial matrix) if, 

{ro} n {Seo} =O and {so} n {sea} =O, where 

Proof 

Since IP c(s) P(s)1 = IPc(s) I I P(s)l, then 

{so} == {So: IPc(so) P(soH =o} 

(16) 

Let .';0 E {'~o}. From equation (16) we have the following two cases: 

Case 1: 

From the assumptions, 

rank [P c(so)] = tn. (17) 

By Rosenbrock's lemma (Lemma 3) and Sylvester inequality, 

rank [:(~))P(so) ] = rank [ (~c(so) ~) (:~;:D ] = m (18) 

Case 2: - ( )b -'{ } So E l seof ut so~ 1'0 

From the assumptions, 
rank [R(so)] = m, (19) 

and hence 

(20) 

So, from equations (18) and (20) {R(s), P c(s)P(s)} are rrp. 
Q.E.D. 

By using a similar proof to that of Theorem 2, we can establish the 
following theorem for the general case p =f:. m. 
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Theorem 3 
"If {R(s), P(s)} are rrp polynomial matrices of dimensions p x m and m x m 

respectively with R(s) offull rank p and P(s) is invertible, then {R(s), Pc(s)P(s)} is 
also rrp (where Pc(s) is invertible) if, {so} n {seo} =0 and 

k [
Pc(Seo) ] _ r 'I. 

ran -R(- - -P-=- f(- -) - m, VSeo E ,seo! 
seo) Seo 

In spirit of Theorem 1 and Theorem 2 we outline now an algorithm to 
design an m x m precompensator Tc(s) for T(s) such that B*(T(s)Tc(s)) is of full 
rank and the compensated system will still be controllable and observable. The 
algorithm is constructed for the invertible case (p = m), and a modification will 
be given for the more general case p #- m. 

Algorithm 1 

Step 1 Find an m x m polynomial matrix X(s) such that R(s) ~ R(s)X(s) is 
column proper with equal column indices and Tc[R(s)] = Im. This can 
be computed by using the following substeps: 

a) Find an m x m unimodular matrix X1(s) such that Rl(S)~R(s)Xl(S) is 
column proper (Wolovich 1974, Theorem 2.5.7, p. 27). 

b) If the column indices ofR1(s) are equal set, let R2(S) Rl(S) and go to 
(c). Otherwise define X2(s) as a diagonal matrix of monomial entries of 
minimum degree such that Ris)~Rl(S)X2(S) has equal column indices. 

c) Set X3 = T; 1(R2(S)) and X(s) = Xl (s)X 2(S)X 3 . 

Step 2 Find a unimodular matrix U(s) such that P(s) = U(s)P(s) is column 
proper, where P(s)~P(s)X(s) (Wolovich, [12], Theorem 2.5.11, p. 30 
yields P(s) in Hermite-form}. 

Step 3 Find U - l(S) (by any suitable method as that given by Buslowicz [2]), 
and choose an arbitrary diagonal polynomial matrix Pc(s) (under 
only the constraint of Theorem 2) of minimal degree such that 
aclU-l(S)]~aclPc(s)], Vj and Pc(s)P(s) is column proper and let 
Tc(s) = (Pc(s)U(S))-l. STOP.* 

Remark 1: Similar to the proof of Theorem 1 we get 
- / - /-1 -R(s)=lms +R/_ 1s + ... +Ro, 

(Pc(s)P(S))-l = Sh?!i\+ ')" , 
s + ... 

* It is an open subject to study how to choose U(s) so that Pc(s) will be of minimum order. 
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then 

B*(T(s)Tc(s)) = lim D(s)T(s)Tc(s)= 
s .... x 

So B* will be nonsingular and the Gilbert indices are given by dii = GCi -t. 
Remark 2: U(s) does not affect the controllability of the compensated system 
since it is a unimodular matrix. 

Example 3 
Consider the following transfer function matrix describing an O.L.S., 

s+1 s+2 
S2 S2+ 1 

= [S+1 s+2 ] [~ o ]-1 
T(s) = 

2 2s+3 2s 2s+3 S2+ 1 

s S2 + 1 

R(s) P-l(S) 

W olovich's invertible decoupling algorithm yields a precompensator of 
order "J", whose dynamics depend upon the O.L.S. T(s), and a CL.S. Td(S) of 
order "4". Suppose that the desired form is: 

(s2+0.8s+0.15) 

o 

then Wolovich's precompensator will be 

2s+9 
s-0.6 

2s+6 
s-0.6 

o 

s+2.8 
---

s-0.6 

s+ 1.8 
s-0.6 

and hence the precompensator will be unstable. 
Now by Algorithm 1, 

Step 1 

X(s) = [~2S+3 ;~ 1 ] 
- [S+6 -2 ] and R(s)=R(s)X(s)= 9 s-3 



Step 2 

Step 3 
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- [ 2s3 _S3 J 
P(S) = P(S)X(S) = 2 ~ 3 2 ? 3 3" l' - s-+ s -_s+ s -s-+s-

[
-s 

U(s) = 1 
-(s+ I)J 

1 ' 

U-I(s) = [ 1 S+IJ 
-1 -s 

We can choose Pc(s) to be diagonal and having eC I =0 and eC2 = 1 

145 

Pc(s) = [~ s~al Pc(s)P(s) = L~~3a~(~2s~~;s3+3) (s+a)(-~2+s-l)J 

[_
11 ;-:s~ j Tc(s) = 

s+a 

and 

For check, 

[
-1 

B*(T(s)Tc(s)) = _ 3 

From the controllability. and observability point of view, "a" can be 
chosen arbitrarily under the following constraints: 

a:;60, a:;63 and a:;6 ±j 

To extend Algorithm 1 for the general case p:;6 m, Theorem 3 is used in Step 3, 
instead of Theorem 2 and the first step in the algorithm can be modified as 
follows: 

Step 1. Find an m x m polynomial matrix Xis) such that the p x p submatrix 
consisting of the first p-columns of R(s) is column proper with equal 
column indices and rcOt(s)] = [Ip A], where A is an p x (m- p) scalar 
matrix. This can be computed using the following substeps: 

i-From R{s) find Rp(s), the p x p minor of maximum determinental degree 
among the p x p minors of R(s) having nonvanishing determinant. 

ii - Rearrange the columns ofR(s) by an m x m scalar matrix Xo such that the 
first p-columns will be those of Rp(s), i.e., 

Ro(s) = [Rp(s) ! R (s) ] 
px(m-p) 
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III Use the sub steps a, b, and c of Algorithm 1 for the p x p submatrix Xp(s) 
such that Rp(s)Xp(s) has column proper form of equal column indices and 
r cCRp(s)Xis)] = lp, 

Let 

Example 4 

Step 1 

Step 2 

Step 3 

X(s)=Xo [Xo p 0 J 
lm-p 

s+ 1 
s s+l s+2 

T(s) = = 

o o 
s 

s 

-(s+1)2 

o 

o ] o , 
s+2 

U(s)~ [ ~ 
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We can choose Pc(s) to be diagonal and having oC I = 1 and oCz =oc3 =0: 

[

s+a 0 0J 
Pc(s) = 0 1 0 

Tc(s) = 

o 0 1 

s(s + a) 

-2s-1 

o 

0 0 
s+a 

-s 
0 

s+a 

0 0 

o 1 o , 
s+2 

147 

Hence we achieve a mllllmum order compensator with one pole 
arbitrarily assigned. By using Theorem 3 controllability can be ensured if a=/: 0, 
a =1= 1 and a =1=2. 

For check B*(T(s)Tc(s» = [~ ~ ~ l i.e., offull rank p = 2. 

4. Precompensator design using the interactor idea 

Wolovi,::h and Falb introduced the idea of the interactor in 1976. They 
showed that for an p x m proper system there exists as associated, unique 
polynomial matrix of special form, and they called it the interactor of the 
system. We shall make use of the interactor idea [15J to construct another 
technique in order to achieve the decoupling condition, i.e., B*(T(s)Tc(s» is of 
full rank. 

Theorem 4 
"For an invertible system described by an m x m proper transJer Junction 

matrix T(s), it is always possible to design an m x m proper precompensator Tc(s) 
oJ order ne such that B*(T(s)Tc(s)) is nonsingular, and all the nonzero poles are 
arbitrarily assigned. The precompensator order is bounded by the inequality 

m 

ne ;£ L (b-bg)-(f'l -bg) 
i= 1 
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where b = degree [~T'(s)J, T(s), and {J;}i= 1 are the transpose of T(s) and the 
interactor indices oJT(s) respectively and bg is g.c.d. oJ the interactor indices." 

Proof 

Let the transpose of the plant description be T'(s), then from Lemma 3 in 
[15J, there is a unique interactor ~T'(s) such that 

lim ~T'(s)T(s)= KT' 

with KT' nonsingular, and 

o o 
o 

sJlh~_l. ds) sfih~_1.2(s) 0 

sJlh~l (s) sfih~2(s) sf;" 

If 

then equation (21) may be written in the following form: 

lim D'(s) N~(s)T(s) = KT' 

where 

Sfi -Og 0 

N~(s)= 
sJl-Ogh~l(S) sJi-og 

Taking the transpose of equation (24) 

lim D(s)T(s) Nc(s) = K~, 

o 
o 

(21 ) 

(22) 

(23) 

(24a) 

(24b) 

(24c) 

(25) 

From the above equation, it is obvious that there is a polynomial matrix 
Nc(s) such that B*(T(s)Nc(s)) is nonsingular and all the Gilbert indices of 
T(s)Nc(s) are equal to bg. 
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Let Ne(s) be the numerator part of a precompensator Te(s), then the 
denominator part De(s) must satisfy the following two conditions: 
(i) Ne(s)D; 1(S) is proper (for the practical. realization), and 

(ii) B*(T(s)Te(s) is nonsingular. 
A choice of De(s) which satisfies the above two conditions may be: 

[

sf!-O'(s"-fi+dls"-li-I+ .. ,), 0, 6] 
O.,(s)= ? sf2-<'g(s"-li+d~s"-li-' +" .), .. " 0 

0, 0" . "sf;"-og(s"- I;" +d~s"-1;"-1 + ... ) 

(26) 

where d{ are arbitrarily scalars, i = 1, ... , m,j = 1, 2, ... , c5 -hI, Equations (24c) 
and (26) give the precompensator description Te(s) • 

sf! - .oh21 (s) sf! -"'h~1 (s) 

(s"-/!+dls" fi 1+ ... )' S"-O'(s" li+dr so - 1i 1+ ... )' , .. , sf;" Oo(s" I;"+diso /;" 1+ ... ) 

o 
T.(s) = 

o o 

(27) 

From equation (26) and (24c) it is clear that the sufficient order of Te(s) 
(sufficiency is a result ofthe special choice ofD(s) of equal index set) is bounded 
by 

m 

ne ~ L (c5-c5g)-(f'1 -c5g) (28) 
i= 1 

In light of the above theorem the following algorithm is constructed. 

Algorithm 2 

Step 1 Find the interactor ;T'(S) ofT'(s). 

Step 2 Factorized (;T'(S» as, 

(;T'(S»= Neo(s) Nd(S) , 

where Nd(S) is the diagonal right divisor of (;T'(s»' of maximum column degree 
(i.e., the entries of N.(s) will be monomials due to the special form of the 
interactor). 

Step 3 Let 1'o(s)=T(s) Neo(s). If B*(1'o(s» is nonsingular then set NemiJs)= 
= Neo(s) and go to (5). 

5 Per, Pol. El. 27/2 
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Step 4 a- Compute k, the number of all the possible variety sets among the 
column indices of Nd(S), 

b- Set 1= 1 
c- Multiply each column of l' o(s) by the s-power, equal to the 

corresponding element in the lth set to form 1'1 (s). Actually this is equivalent to 
multiplying the columns of Nco(s) by the same index-powers to form Ncl(s). 

d- Find B*(1'1(s)). If B* is singular go to (e), otherwise compute the 
precompensator order, designed according to the Ith index set, after division by 
G.C.R.D. of Ncl(s) and PCI(S). 

e- Set 1+1. If I ~ k go to (c) otherwise go to (5). 
Step 5 For nCmin ' the minimum value of nC/, set sligNc(s)~ N Cmin ' and compute 
P c(s) in a similar way to that given in Theorem 4 (here f: and 6g belong to NCmiJ 

and STOP. 

Remark. 3: Using Algorithm 2, there is no guarantee for the controllability of 
the precompensated system. The number of nonzero poles of the precom-

m 

pensator is iiC/= L (6 1-1:) and they may be assigned arbitrarily. 
i= 1 

Example 5 (Cremer [3J, Sinha [10J) 

Step 1 

Step 2 

o 
s 

s+2 
5(S+ 1) 

5-3 2(s2+3s-1) 
T(s)= s(s+2)(s+3) 5+2 s(s+ 1)(s+2) 

2s+5 o 
s+2 (s+ 1)(5+2) 

o 

(;T(S))' ~ [~ : ~3~~;S][~ ~ :J 
~---v ~ 

Nco(s) Nd(s) 



The set 

(1,0,0) 

(I, I, I) 

(1,0,2) 

(0,1,0) 

(0,1,2) 

(0,0,2) 

Step 3 

PRECOMPENSATOR DESIGN 

Table I 

B* and /le for the different sets 

B* 

[ 
I ° ° ] 
I I ° 
° I ° 

[ 

I ° 0 ] 

° I ° 
° I ° 

[ 

I ° -I ] 

° ° I 
o ° -3 

[ 

I 0 ° ] 
o I ° 
o I 0 

[ 
° 0 I ] 
o I I 

° 1 -3 

[ 
° ° -1 ] 

° ° 1 

° ° -3 

s 

s-3 
s(s + 2) (s + 3) 

o 

The set 

(1,1,0) 

(1,0, I) 

(I, 1,2) 

(0, 1. 1) 

(0,0,1) 

o 

B* 

[

10 ° ] 
° I ° 
° I ° 

[
10 ° ] 
1 I I 

° I -3 

[

10 I ] 

° I I 

° I -3 

[ 

I ° -I ] 

o I ° 
° I ° 

[ 

1 0 -1 ] 

° 1 1 

° 1 -3 

-1 

s(s+ 1) 

s2-1Os+3 

s+2 s(s+ 1)(s+ 2)(s+ 3) 

-3 
s+2 (s+ 1)(s+2) 
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4 

5 

5 
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Step 4 k = 11 and the sets are: 
(1,0,0),(1,1,0),(1,1,1),(1,0,1),(1,0,2),(1, 1,2),(0, 1,0),(0, 1, 1),(0, 1,2), 
(0,0, 1), and (0,0, 2). 
Table 1 shows B* and ne for the different sets. There are three sets with 
nonsingular B*. Actually the set (0, 0, 1) which gives a precQmpensator 
of order "'5", is the direct application of Theorem 4. 

Step 5 The set (1,0, 1) yields the minimum value, nemin =4, i.e. 

[' 0 
-s(H 1) J 

Nc(s)= ° 1 -s(2:+3) , 

° ° s-

[ s(Ha) ° ;] Pc(s) = 0 (s+b)(s+c) 

0 0 

0 
-(1 +s) 

s+a s 

Tc(s) = 
0 

-(3+2s) 

(s+b)(s+c) s 

° 0 

The precompensator order given by the algorithm is equal 4, while that one, 
which can be obtained by using Wolovich's invertible algorithm, has order 
only 3, but here three poles are arbitrarily assigned, and the fourth one is at the 
origin. 

We can extend the previous algorithm to the more general case of p i= m, 
but full rank replaces nonsingularity. 

Example 6 
Consider the same system given in Example 4. 

Step 1 



Step 2 

Step 3 

PRECOMPENSATOR DESIGN 

[

S+1 

1'o(S) = ~ 
s 

-2s-1 
s(s+ 1) 

-1 

S 

-3S-2] 
s(s+2) 

-1 

S 

B*(T o(S» = [11 0 0J 
-1 -1 

It is clear that B* is of full rank p = 2. 

s N.(S)=[ ~ 
-1 

o 

Step 5 

[ 
1 -1 -1] -- -- --

s+a s s 
Tc(s) = 0 1 0 

o 0 1 
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So we achieve a precompensator of order "1" and equal to the minimum one. 

The integrator compensator design 

In some cases it is possible to design an integrator precompensator (with all its 
poles at the origin), which has an order less than that obtained by Algorithm 2. 
The following simple steps describe the method. 
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Algorithm 3 

Step 1 Find Nc(s) as in Theorem I 

Step 2 Find B(s) £ adj Nc(s), and factorize it as: 

B(s) = s"9Nc(s). 

where Og is g.c.d. of the elements of B(s). 

Step 3 Set Tc(s)=Nc(s))-I. STOP 

Example 7 

For the same system given by Example 5 (Cremer [3J, Sinha [10J) 

and T«s)= [ ~ o l+S~-l 
s 3+2s 

o 1 

So, we can achieve decoupling condition using an integrator com­
pensator of order 2 only. 

5. Conclusion 

Two methods have been presented for designing a precompensator Tc(s) 
of any given proper system T(s), such that B*(T(s)Tc(s)) will be of full rank. The 
first method is described in Algorithm 1 and based on Theorem 1, which gives a 
new necessary and sufficient condition of decoupling a system described in its 
minimal, controllable and observable form in the frequency domain. The 
second method applies the constructive proof of Theorem 4 for precom­
pensator design, which makes use of the interactor of the ,transposed system. 

The methods presented here ensure arbitrary pole-assignement of the 
precompensator, but the order is not necessarily the minimum one. The 
methods have the advantage that they use only frequency domain approach 
without reference to the state-space description. The suggested methods can 
also be used for constructing an intermediate stage compensator for the output 
feedback decoupling purpose, where nonsingularity of B* is one of the 
conditions necessary for the ex istence of such control law. 
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