
AN APPROACH TO REAL-TIME
MICROPROCESSOR PROGRAMMING

1. SARBO and G. RACZ
Department of Instrumentation and Metrology. Technical University H-1521 Budapest

Received January 13, 1983
Presented by Prof. Dr. L. SCHNELL

Summary

Actually, programs for microprocessor based devices are mostly written in assembly
language. Application of CDL, a high-level programming language and a software technology
system developed at the Department ofInstrumentation and Metrology, Technical University,
Budapest, will be presented. A system generating a real-time monitor (CAL) and its application
to CDL programs will be described.

The intelligent .measuring instruments are classed into three groups
according to the produced series numbers:

1. Medium and great series 100 pieces and over
2. Small series 10 to 100 pieces
3. Unique 1 to 10 pieces
At present, the lengths of programs necessary to their control used to be:
1. 100 to 1000 lines,
2. 1000 to 5000 lines,
3. 5000 to . . . lines, respectively.
In Hungary, great many second category devices are being developed.

Their hardware and software exclusively are developed by engineers. The great
majority of device programs are prepared in assembly language, and are run in
a blank computer or under some kind of individually developed monitor. It is
characteristic ofthese programs that the part describing the realtime structure
can be separated definitely from the sequential algorithms. Also the sequential
part can be divided into two kinds of algorithms: the seldom run data
processing and control part making up most of the program; and the programs
serving interruption of short execution time. The cross development tech­
nology which is usually based on some small computer (PDP-11, TPA 1140,
etc.) or possibly on a development system and "cross-assembler", is widely used
for developing sequential algorithms.

Devices in category 2 actually consist of a 8-bit microprocessor (18080,
Z80, M6800, ...) as a rule. In this category the device programs are about

6 Per. Pol. El. 27/2

158 SARBO. J. Ricz. G.

1000 ... 5000 lines long, involving the preparation of an about 25 ... 12.5
Kbyte program beside e.g. the 2.5-byte average instruction length for the Z80,
and assembly programming supposed. According to our experience the
preparation of programs of this size and adaptation to real-time environment
generally mean a serious problem. It may be ascribed to the qualitatively
increased complexity of bigger programs, to the assembly language practically
unfit for drafting, and the missing technology.

What are the most important problems of assembly programming for us
an answer expected from the application of high-level language?

1. Modifiability:
simple error recognition and error correction (maintenance), program
modification (new functions).

2. Understandability:
comprehension, possibly alteration of the program on the basis of the source­
test and documentation (if exists) long after having finished the program
development.

3. Safety of programming:
close estimation of programming time, with special regard to debugging of the
program.

Obviously, the problems above are in close relation to the power of
expression, the self-documenting ability and level of the applied programming
language.

At the same time application of a high-level language raises problems
already solved in assembly programming. These are mainly questions
connected with the program's efficiency:

1. Program, size
2. Run time (execution speed).
With a microprocessor device both can be problematic. For a device

produced in small series (10 to 100 pieces) or in high numbers, it is not the same,
how much of memory has to be accommodated. On the other hand, the devices
work in real-time environment, there may be time-critical parts which require
programs of suitable speed.

Because of the real-time environment, eventual parallel processes may
require a monitor for synchronization and mutual exclusion. The monitors are
generally of unique development, although the same monitor - more or less
altered - may be used in different devices within the same developing
environment. This fact, however, little affects uniqueness of the monitors which
can be tested only to a degree by the relatively narrow range of users (formal
verification would be too complicated to ponder even its possibility).

REAL·TlME MICROPROCESSOR PROGRAMMING 159

Microprocessor software-technolog y system

The technology system applies cross-method in every phase of the
program development, i.e. not only for translating the programs but also for
their algorithmic verification. It is an essential condition that in the
technological system debugging of the program can be done on the high level of
the sourse-Ianguage (rather than on the level of computer code).

The system is based on the CDL (Compiler Description Language)
programming language. The CDL permits modular programming, supports
structured programming, step by step refinement. At a difference from the
traditional programming languages, the CDL is an open-ended language, that
is, it contains little elementary algorithms. To prepare a program, in every case
a "language" suitable for describing the given problem has to created, contrary
to the traditional languages where the problem has to be expressed in the given
language. Thus, learning the way of thinking required by the CDL may last
long.

The CDL program contains computer-independent and computer­
dependent parts. The computer-dependent algorithms (CDL macros) are
composed in assembly language. Adaptation of the program means to
transcribe the computer-dependent parts into the syntax of the target
processor. One part of the macros may be common between certain programs,
transferable from libraries or else. According to our experiences, the ratio of
macros - which can be adopted from the library - may be 70 to 90% for
system programs. The use oflibrary macros does not limit the open-endedness
of the language, the missing macros have to be uniquely written in every case.

From the system's aspect portability of programs written in CDL is the
most important characteristic of the CDL, i.e. they can be ported from one type
of processor to the other one without efficiency loss. This characteristic of the
language permits to do the time-consuming debugging phase of the program
development in a PDP-ll computer. The memory size, speed and great
number of peripheral units of PDP-ll are more efficient supports of
development than is a microprocessor development system.

The process of microprocessor program development is shown in Fig. 1.
The main phases of development are:
1. Preparation of program in the host (PDP-ll) computer.
2. Debugging of program in the PDP-ll computer.
3. Preparation of the algorithmically correct program for Z80 (tran­

scription of computer-dependent parts).
4. The program's test in Z80.
As the target processor (Z80) is less suitable for software development, it is

much simpler to test the transcribed version of an algorithmically correct
program, and to find errors put "it in the adaptation phase than to discover
errors of a still unknown (perhaps wrong) program.

6*

160 SARBO. J.~ RAcz. G.

COL level correcting

i
machine COL compiler MACRO -:; COL level
independent 1-+ for i-'" assembler -i> debugger f...-./[
algorithms POP- 11 ,

[machine I
'dependent I
ports for PDP-ll

l,maChine COL compiler UMAS assembly level - _I
,dependent - for ..;. assembler ~ debugger ~ jparts for Z 60 Z 60 for Z

Fig. 1. Process of MicropiOcessor Program Development

Real-time programming system

ng program

80

One of the elements of software technology system developed at this
Department is the CAL realtime programming language. The CAL is in fact a
macro-library defined by UMAS (Universal Macro Assembler) offering.high­
level languages, up-to-date means for formulating real-time structure of the
given problem, as well as for avoiding time dependent errors. Synchronization
of parallel processes is done essentially by semaphores, a linguistic means is
given for mutual exclusion, etc. within the frames of the language, there is a
possibility to define programs processing interrupts, as well.

Segmentation of the microprocessor device program and giving real-time
structure are made in CAL, but sequential algorithms including programs
handling interrupts can be written in any of the programming languages. In
this respect let us make two remarks:

1. CAL is a macro library with a limited checking power of type and
structure, usual in high-level real-time programming languages (PASCAL,
MODULA, AD A, etc.)

2. Owing to the macro-level of CAL assembly, sequential algorithms are
the simplest given in assembly. But there seems no obstacle to write the
algorithms in CDL or other high-level language, if adaptation of different
parameter-transfer mechanisms and runtime systems at the connection points
of the high-level language and CAL is provided for.

The CAL gives a possibility for modular programming. The efficiency of
sequential programming may be improved by using available module-libraries.

Typical library moduli are the following:
- arithmetical module
- data-processing module
- peripheral-handling module

REAL-TIME MICROPROCESSOR PROGRA.If.H/.YG 161

Fitting CDL and CAL parts

Fitting CDL-program and monitor has been realized at assembly level.
The CAL supports it definitely, and in CDL the services of operating system or
monitor have been accessible through macros. Also a possibility of CDL-Ievel
fitting emerged. But the two programs are correlated not only in control but in
certain cases also in data activating a CDL-subroutine from the monitor 'would
require simulation of the CDL parameter-transfer mechanism depending on
the implementation. The data relation had also to be solved for assembly-level
connection. To this aim, CDL macros writing the CAL data into CDL-globals
(i.e. variables) have been defined. This solution does not depend on the given
implementation, although it impairs the CDL program, more exactly its
hiding-degree.

The most of problems are caused by the CDL in fitting CDL- and CAL­
structures. Reacting on the events in the real-time environment the CAL
monitor starts the right process activating thereby the (sequential) handler
algorithm written in CDL. A solution can be imagined where each algorithm
and the respective definition are written as independent CDL programs. This
leads to a largesize program likely to comprise certain program parts several
times. In this way the optimizing capability of the CDL compiler is missed.

The whole CDL program can only be optimized if all the algorithms are
kept in one program. As the CDL is a high-level language, the compiler
controls strictly the program closeness, hence the variable definition must be
compiled together with the program. The optimum case would be to keep the
variable definitions belonging to the processes (RAM) and the access
algorithms in the monitor, mutually excluding the access to data of separate
processes. But the CDL does not directly support such a separation of data and
algorithms. A compromise solution of keeping the CDL-level data belonging
to the real-time processes in the CDL program independently compiled by
CAL monitor has been chosen. The assembly-level data of monitor are
mapped onto CDL globals by means of the presented macro mechanism. As
these globals are not visible to the monitor, they are exempt from mutual
exclusion, so the CDL program may impair them. (Fortunately, the number of
these kinds of globals is low 0 to 2 in each process).

The CAL has only UMAS version at present, the language itself, however,
is processor-independent. It has no equivalent PDP-11 version that is why the
cross-development technology is irrelevant to the control of real-time
characteristics of CDL programs.

The technology does not permit to control the real-time behaviour on the
PDP-ll, seeming to us to be anyhow needless, indeed. The real-time structure
can be controlled in itself, helping to screen out real-time programming errors.
If the real-time structure is wrongly chosen, in the majority of cases there is not
help to rewrite the program.

162 REAL-TIME MICROPROCESSOR PROGRAMMING

Problems concerning execution time, memory size cannot be ulteriorly
solved for programs written in assembly language. Programs, however, written
in CD L can also be tuned from the aspect of time and memory size., for
example, by formulating critical parts as macros or by applying a more suitable
run-time system.

References

1. KOSTER, C.H.A.: A Compiler Compiler Matematisch Centrum Amsterdam, MR 127 (1971)
2. Concurrent Assembly Language (CAL) Programming Handbook, Technical University

Budapest, Department of Instrumentation and Metrology
3. HANA.K, P.-RACZ, G.-SAROO, 1: Microprocessor Software Technology Conference on

Programming Systems 81, Szeged (1981)

Janos SARBO }
Gabor RACZ H-1521 Budapest

