
APPLYING CDL FOR REAL-TIME
PROGRAMMING OF MICROPROCESSORS

1. SARBO

Department of Instrumentation and Metrology, Technical University, H-1521 Budapest

Received January 12, 1983
Presented by Prof. Dr. L. SCHNELL

Summary

Concrete examples have been presented to illustrate the efficiency of applying COL and
CAL for developing real-time programs for microprocessor-based devices, recently constructed
at the Department.

The example is a protection switching equipment, part of a complex
telecommunication system developed on commission of the Research Institute
of Telecommunication. According to complexity and program size, the
equipment belongs to category 2 [4]. The sequential algorithms defining the
program size have been prepared in a high-level language (CDL - Compiler
Description Language) with inherent advantages, at the same time permitting
to achieve storage capacity and speed near the assembly level. The necessary
real-time monitor has been made by means of a macro-level monitor
generating system (CAL - Concurrent Assembly Language), short-run
interrupt handlers have been programmed in assembly language.

This concrete example will illustrate experience obtained in applying
CDL-based software technology and CAL macro-library developed at the
Department.

Protection switching equipment

A part unit of a multi-channel microwave telecommunication control
system has to be developed. The system controls one or more transmission
chains composed of sections. The protection switching equipment handles one
section of the telecommunication chain. There is a two-way communication on
the seven channels of each section. Besides there is a stand-by channel in both
directions. The quality of channels is continuously measured by a special
hardware that indicates a switching demand if given quality conditions occur.
The channels - beside their actual quality characteristics - have a priority, in
addition, the operator can instruct channels to configuration, measurement or
testing, the equipment protects the channel qualified the most important by
quality, priority, etc. characteristics to the reserve channel. Another time, e.g. in

164 SARBO. J.

case of a demand to measure it transfers the output of a generator of controlled
quality to the chosen channel.

Each section consists of receiver-transmitter pairs according to Fig. 1.
In the section the master function is generally supplied by the receiver side

except some cases. The information exchange between receiver-transmitter
pairs far away proceeds in both directions along a preferential, so-called main
channel - one of the controlled channels· - in serial mode.

A

transmission dirE.'ction ..
B

transmission
...... ------------i----J.....I channE.'1

______ --'1:>

<1-------

[;],
I

- --- I

A I '" 5J " I 0 ,units controllE.'d
L ___ ..J by onE.' procE.'Ssor

Fig. 1. Receiver-transmitter pairs

Upon random quality changes and operator demands, the transmission
channels compete for one resource power (protecting channel). Besides of the
system asymmetry, the complexity is increased by the specified short switching
time (below 40 msec) and some other special restrictions. It is an important fact
that the protection switching equipment is part of a system of high reliability.
Every process is protected by timing and in case of deadlock the switching
program is restarted by a so~called "software watchdog".

A detail of the real-time structure of the equipment is seen in Fig. 2.
The problem has been found to be typical ofthose arising in programs of

devices category 2, the most important being:
- the program has to function in real-time environment (4-10

processes);
- there exist time-critical parts;
- complexity of the problem increases the size of sequential program

parts.

change in
quality

Channel
quality
handler(§)

SIGNAL

WAIT

Receiver
section 1

@

where:

normal

module

CDL FOR REAL-TIME PROGRAMMING

.. tic" interrupt

SIGNAL

PUT

Receiver
section 2

@

module
with
mutual
exclusion

serial i/o
interrupt

Section
transmitter

@

interrupt
handler
module

Fig. 2. Real-time structure

Application experiences

keyboard
interrupt

Keyboard
command

§

8

The device program has been realized in four, distinct phases:

165

1. Programming and debugging of version CDL-PDP-ll of the
switching algorithm.

2. Adaptation of the CDL program to microprocessor Z80.
3. Generating and testing CAL monitor running on Z80.
4. Fitting and testing the switching program and the CAL monitor.

166 SARBO,J,

ad 1.
Coding of the channel switching algorithm was preceeded by a long and

deep-going specification process. Meanwhile it became clear that the score of
unique boundary conditions would excessively complicate the testing
algorithm, involving control all of meaningful input combinations of about 40
inputs. The high number of input combinations induced us to functional
testing. To this aim an interactive simulator system assuring simple control of
the 40 inputs had to be produced.

The simulator, again written in CDL, maps the hardware handled by the
channel switching program onto the display. All kinds of meaningful state
transitions can be produced in simulated hardware. Also the system responses
on state transitions (generations) appear on the display. For both CDL
programs an experienced CD L-programmer needed less than four weeks to get
.from coding to the syntactically correct versions of the programs.

Program sizes:
CST (channel switching) 1700 lines (5.5 Kb)
SZM (simulator) 1500 lines (4.5 Kb).
From the aspect of algorithm, the simulator is essentially simpler than the

channel switching program. Its relatively large size is due to the comprised
algorithms for display handling, command processing and hardware simulat
ion. As a matter of fact its programming did not strive for reducing its size.

In preparing the programs the types, date of their occurrence time, etc. of
committed errors have been recorded. Only errors found during debugging the
programs were recorded until all the developed programs began to normally
function. Therefore no data on how the programs work are available. Neither
the number of errors subsisting in each program can be told, although some
publications recommend estimation by error statistics taken during program
debugging. Errors can be detected on the basis of program source text or
program run (answer given on some input). The ratio of errors from either
source has been detailed in Tables 1 and 2. The most of errors are seen in Table 1

error type

misprint:
assembly error:
CDL alg. error:
change in specif.:
initiation error:
number of error groups:

TaWe I

Error types of switching program (CST)

work day

2 3 4 5

(0.15) (4.3) (1.4) (2.2) (1.0)
(0.9) (3.2) (1.3) (2.0) (2.2)
(0.7) (1.2) (7.0) (1.3) (2.1)

(0.1)
(3.0) (2.0) (1.0)

(.. 10 ..) (.... 15)

where (x, y): x run-time; y number of errors found in the source list

6 7

(2.0)
(2.4) (2.0)
(2.1) (1.0)

(1.1)

error type

misprint:
assembly error:
COL alg. error:
change in specific.:
initiation error:
number of error groups:

CDL FOR REAL-TIME PROGRAMMING

Table 2

Error types of simulator program

work day

2 3 4 5

(0.13) (J.\) (3.2)
(0.6) (1.0)
(004) (0.3) (3.3) (3.2) (3.0)

(0.1)
(0.2)

(.. 5 ..) (... .4)

6

(1.0)

(4.1)

167

7

to have been found during the first analysis - based on a source program list
- of the syntactically correct program. There after the number of errors
recognized in the channel switching program has essentially diminished,
attributable to a severe error causing at the first run the program to, "kill" the
operating system RT-ll, inhibiting its localization.

Again, misprints were found even by the 6th time. Most of misprints
could have been screened out on the basis of the first program list by having
had the program text (especially the assembly algorithms) checked.

Programming errors are generally not evenly distributed in the program
text. An error found - in the initial stage of debugging - may eliminate several
errors (group of errors), thus the running time is correlated with the number of
error-groups found, rather than with the total number of corrected errors. *
ad 2.

Transfer means a semantically equivalent transcript ofCDL-macros. Size
of the pr<?grams (after debugging on PDP-ll):

Channel switching program is 1800 lines, among them 300 lines (cca 15%)
are CDL-macros. Final size of the simulator program: 1700 lines, among
them 200 lines are CDL-macros.

This ratio is 10 to 30% in case of other CDL-programs made by us.
Transfer of macros is a mechanical work but easy to go wrong. Due to the

small number of macros, transcript involved no error, version Z80 of the CDL
program worked immediately. The situation, however, is usually not so good.
In case of bigger programs in the rewriting phase about 10 to 20% of macros are
bungled. Essentially, if the program doesn't work on the target-system after
porting, the error resides exclusively in the transcript of macros. It should be
emphasized since the target-system (Z80) has only assembly-level debugging
facility.

* Error group means mainly typical errors (e.g. misprints), different errors made in a small
logical unit and consequences of errors.

168 SARBO.J.

(errors foun d)

54

50
'\.
.~ST+SZM

1,0 "-

30

20

10

2 3 4 5 6 7 8 9 (man day)

processor time
under RT-l1
(ho ur)

':1
7 6

~: 4 3 4 -
I i ~

2 3 4 5 6 7 8 9 (man day)

Fig. 3. Processor-time and error statistics of CDL-PDP-ll programs

ad 3.
CAL was not applied before by the author for programming real-time

monitors, a fact responsible for difficulties in preparing the monitor.
The monitor had to be defined by CAL macro calls. A reference book was

available to this. Programming of the monitor is a mechanical work after
having specified the processes. On the basis ofthe specification an experienced
programmer does it in a few hours; a syntactically correct monitor can be
produced in 1 or 2 days.

The monitor has been debugged without building in sequential
algorithms and interrupt-handlers. The operation of interrupts has been
checked on the empty monitor and the scheduling algorithm of the monitor
tested by adjusting the synchronizing means (semaphors, conditions, etc.). The
number and types of errors retrieved have been compiled in Fig. 4 and Table 3.

The first trial produced few errors but acquaintance with the monitor. On
the second occasion more than 50% of all the errors were found.

The monitor has been compiled under RSTS-E, much slower than the
operating system RT-l1. As CAL hides the monitor's code before the user and
little experience with CAL was available, the monitor was re-compiled after

CDL FOR REAL-TIME PROGRAMMING 169

each error (or group of error) found, protracting the development. Size of the
monitor: 650 lines (2.5 Kbyte).*

misprint:
assembly error:
CAL applic. error:
change in specific.:
initiation error~

(errors found)

20
11

10

4~
2 3 4 5 6 (man day)

processor and
terminal usage

(hour)

10

5
6 6
z~o ... ""4', 4 4

"'4
2 RSTS , ,

1 2 3 4 5 6 (man day)

Fig. 4. Error and processor-time statistics of CAL program

Table 3

Error types of CAL program

work day
error type

2 3

2
1 1
5 2
1
2

application error of system Z80:

Evaluation of results

4 5

2
1
1

The measured data permitted to compute some characteristics of
importance. Speed of error correction as a function of re-compilations:
eST: 103/12 = 8.5 errors/compilation

i.e. 103/25 = 4 errors/group of errors
25/12 = 2 group of errors/compilation

* RSTS-E: Time-sharing operating system of POP-ll, RT-ll: single-user real-time
operating system of POP-ll

170 SARBO.J.

SZM: 58/5 = 12 errors/compilation
i.e. 58/9 = 6.5 errors/group of errors
9/5=2 group of errors/compilation

CAL: 21/9 = 2.3 errors/compilation, unique errors.
The number of errors corrected in each compilation point out different

complexities of the two CAL programs. In the monitor unique errors were
prevalent owing to its small size.

In conformity with the above and with the speed difference between
processors PDP-11 and Z80, efficiency of used processor time is the following:

RT-11: 103/34=3 errors/hour
Z80: 21/20= 1 error/hour.
It is also worth mentioning that, referred to a finished CDL program, one

error has occurred each 27 lines, and in a CAL program, each 32 lines.
Portability-based software technology resulted in a program of good

quality in a reasonable time. According to our experience the same in assembly
(by using CAL) would have lasted about 2-3 times longer, mainly because of
the lengthy debugging, testing work.

The adaptation process itself was fairly quick. Also other CDL programs
made at the Department worked in at most 3 to 4 weeks on microprocessor.

References

1. KOSTER, C. H. A.: A Compiler, Compiler Matematisch Centrum Amsterdam, MR 127
2. Concurrent Assembly Language (CAL) Programming Handbook, Department of Instru

mentation and Metrology, Technical University, Budapest (1980)
3. HANAK, P.-Rkz, G.-SARBO, J.: Microprocessor Software Technology System, Programming

System '81 Conference, Szeged
4. SAROO, l-Rkz, G.: An Approach to Real-Time Microprocessor Programming, Periodica

Polytechnica. El. Eng. 27 (1983)

Janos SARBO H-1521 Budapest

