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Introduction 

The eddy current braking of linear motors is usually required for 
obtaining moving force - velocity characteristics optimal from the point of 
view of a particular drive. This necessitates a braking device with prescribed 
characteristics which can be attained with the aid of braking poles of definite 
dimensions and of pole flux-density of appropriate value. This paper presents a 
procedure for the calculation of braking force at poles of given dimensions and 
at given flux-density. In the course of the solution, Ritz process based on 
variational principles is presented for the calculation of stationary conductive 
fields excited by motional induction, and a technique is formulated for treating 
singular excitations which improves the convergence of the numerical 
procedure. An alternative method based on an infinite number of images for the 
solution of the problem is also presented thus permitting the examination of 
the Ritz process. Finally, the results of the measurements carried out to check 
the calculations are presented. 

1. Modelling of the problem, derivation of the describing equations 

The scheme of the studied arrangement is shown in Fig. 1. A plate of width 
2d, thickness s and conductivity (J moves between the poles excited by direct 
current at a uniform velocity v. The task is to determine the braking force acting 
on the plate. To this end, the eddy currents resulting from motional induction 
have to be calculated. The following simplifying presumptions are made for the 
solution: 

The flux-density Bo of the magnetic field generated by the exciting coils is 
taken to be perpendicular to the plate and of constant magnitude Bo under the 
poles, and zero outside the poles. The reaction of the eddy currents on the pole's 
flux-density is neglected, thus the electric field is solely induced by the flux­
density Bo. In the direction perpendicular to the surface of the plate uniform 
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Fig. 1. Scheme of eddy current braking of linear motor 

current distribution is assumed. The conductivity (j is considered to be constant 
and the longitudinal dimension of the plate to be infinite. 

As a consequence of the simplifying presumptions, the electric field of 
eddy currents can be discussed in the coordinate system of the poles as a 
stationary conductive field generated by the impressed field intensity Ei = 
= V x Bo constant in time. In this coordinate system the current distribution 
and the vector Ei of the impressed field intensity seem to be constant. The 
process is linear, thus the electric field belonging to one pair of poles will only be 
discussed in the following. The Maxwell equations describing the phenomenon 
are 

div J =0 (1.1 ) 

curl E=O (1.2) 

( 1.3) 

J. E and Ei denote the vectors of the field generated by one pair of poles. The 
coordinate system is chosen as shown in Fig. 1. In this system, v = va x , Bo = 
= - Boa=, thus Ei = Bo va,. under the poles and zero elsewhere. Since uniform 
current distribution has been presumed in direction z, the problem can be 
discussed as a two-dimensional one in the plane xy. The following equation is 
derived for the scalar potential introduced as E = - grad qJ: 

LlqJ=div Ei (l.4) 

where Ll is the planar Laplace operator. 
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In the following, relative coordinates and dimensionless, relative 
quantities are introduced to simplify the numerical calculations and to obtain 
results independent of concrete dimensions. The relative coordinates are 

x 
(1.5) c=-- d 

v 
(1.6) '1 = -

d 

In the system of relative coordinates the original region is modified as shown in 
Fig. 2, and it does not vary on the variation of geometrical dimensions which 
only affects the relative pole-dimensions a' and b'. The definitions of relative 
quantities are: 

et ' , , , 
, I 

-0', \ : 0' 

1-' 
Fi~I' :C, The studied region in the system of relative coordinates 

The relative potential and field intensity: 

( 1.7) 

e= -grad (P' ( 1.8) 

E. 
The relative value of the impressed field intensity is e i = E', . thus 

I 

(1.9) 

where j denotes the relative current density. 
The relative current flowing through a curve l' of the plane ~11 is: 

i = S j(a~ x dl') ( 1.10) 
[' 
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as is the unit vector normal to the plane (1]. The relative power loss due to the 
two pairs of poles is: 

1 :xc 

p=4S S Ij((,lj)-j((+2c' ,rf)1 2 d(d1] (1.11) 
o - '" 

C' is here the relative value of the dimension c. In formula (1.8) as well as in the 
following the differential operators relate to relative coordinates. The 
relationships between the original and relative quantities are: 

(1.12) 

(1.13) 

(1.14) 

If the image of the curve l' is I in the plane xy, the current flowing through a 
cross section of the plane determined by the curve I is: 

( 1.15) 

(1.4) yields the equation 

( 1.16) 

for the relative potential function. The following boundary conditions should 
be prescribed on the boundary of the region for the determination of the 
potential function: 

cq/ 
- = 0 at il± 1 
C'I 

lim e = 0 for - 1 ::;; '1 ::;; 1 

( 1.17) 

( 1.18) 

In accordance with the definition of e i and the relationship Ei = 

= Bovap the right-hand side of (1.16) is zero except on the lines -a'::;; 
::;; ( ::;; ai, 'I = ± b', and it is singular along these lines. Let us exclude the singular 
locations from the region. Thus, the Laplace equation 

Llq/ =0 ( 1.19) 
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is obtained for the potential function. However, the normal component of 
current density and the potential function have to be continuous along the lines 
excluded from considerations. This means the following conditions for cp' and e: 

lim cp'(~, 1,)= lim cp'(~, 1]); -a'::; ~ ::;a' (1.20) 
,/--+±b' 0 ,/--+±b'+O 

lim e,/(~,17)- lim eT/(~,1])= 1; -a'::;~::;a' (1.21) 
,/--+b' - 0 ,/--+b' + 0 

lim 
'/--+ b' 

eT/(~,1])- lim eT/(~,1,)=1; 
o ,/--+-b'+O 

- a' ::; ~ ::; a' (1.22) 

So, the normal component of field intensity has a discontinuity of unit value 
along the singular lines. 

It is known from the theory of electrostatic field that discontinuity of the 
normal component of the displacement vector or, in homogeneous media, of 
the normal component of the field intensity appears along surfaces with surface 
charge density, In accordance with the analogy between the stationary 
conductive field and the static electric field, the potential function cp' can be 
considered to be excited by surface charges of density 

1'=80 .1 [~J 
m 

along the line - a' ::; ~::; a', 17 = b' and 

V= -8 '/[~J o m 

along the line - a' ::; ~ ::; a', '7 = - b' and of infinite length in the direction 
perpendicular to the plane ~17, with the boundary conditions (1.17) and (1.18), 
provided the permittivity of the medium in the analogous static field is taken to 
be 80 , Consequently, the potential field sought is excited by a singular 
arrangement of charges. 

In the following, the relative potential, field intensity and power loss will 
be determined with the aid of the analogous static electric field. 



254 HANYECZ. P. 

2. Solution by variational method 

The Ritz process based on variational principles serves for the numerical 
solution of boundary value problems of certain types [2, 3]. Let us presume 
that the operator equation described by 

-LJu= f (2.1 ) 

in a region V bounded by the surface S = S! + S 2 and by the homogeneous 
mixed boundary conditions 

(2.2) 

(2.3) 

are to be solved. In (2.1) u and f are functions defined in the region V and ~u 
on 

denotes the derivative of u in the normal direction. According to Ritz process, 
the approximate solution is sought as an expansion 

(2.4) 

The functions CfJ!, CfJ2' ... , CfJn are linearly independent, and they are elements of 
a function-set entire in the energy space of the operator [3]. The coefficients ak 

are obtained as the solution of a set of linear equations: 

n 

L [CfJbCfJj]ak (j,CfJ). j=I,2, ... ,n. (2.5) 
k=! 

In this expression [CfJk> CfJ J denotes the energy product of the functions CfJk 
and CfJj which is defined in our case as [2,3]: 

[CfJhCfJJ = fgrad CfJkgrad CfJjdV. (2.6) 
v 

The right-hand side of (2.5) is the scalar product defined in the region V of the 
functions f "md CfJj: 

(j, CfJ) = f fCfJjdV (2.7) 
v 
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It can be shown that the sequence of the approximate solutions thus obtained 
tends to the solution of the operator equation in the energy norm which means 
that 

lim S grad2 (un-UO)=O (2.8) 
n-+ X) V 

where Uo is the exact solution. 
The convergence of the variational method depends upon the nature of 

the exciting function. The convergence is expected to be slower if the exciting 
function is discontinuous or, or as in our case, is singular. To improve the 
convergence of the numerical solution the singular component is extracted 
from the potential function sought. To this end, the relative potential function 
cp' is sought as the sum of three functions: 

(2.9) 

Here, us(c;, 1]) is the potential excited by the surface charges in free space, t/I(c;, 1]) 
is an arbitrary function with at least two continuous derivatives complying 
with the symmetry conditions on cp' and having a derivative in direction 1/ along 
the lines 1] = ± 1 which is of equal absolute value and opposite sign as the same 
of the function Us' li(c;,I/) is the unknown function whose determination is 
possible with the aid of the equations relating to cp'. 

The function Us can be obtained by elementary methods: 

1 (- f3 A f3 + - 0 Arctan . -,' rctan -
2IT 0 7 

- 0 Arctan -:- + rctan -- 'Y. A 'Y.) 

o " 
(2.1 0) 

Here, 'Y. = c; - a', fJ = c; + a', t' = 1/- b', 6 = '/ + b'. The derivative of the function Us 
in direction 1] on the lines 1/ = ± 1 is 

1 ( 'Y. fJ g( c;) = - Arctan - Arctan - -
2IT e e 

'Y. A fJ) - Arctan - + rctan -
/( /( 

(2.11) 
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where 8 = 1 - b', K = 1 + b'. Thus a function complying with the conditions is e.g. 

(2.12) 

In accordance with the conditions on q/ and the properties of Us and 1jJ, the 
Laplace-Poisson equation 

(2.13) 

is obtained for the unknown function 1/, and the derivative of 1/ in direction tl 
should be zero along the lines rt = ± 1. The Ritz process is applied to determine 
the function 1/. Since the exciting function in (2.13) has an infinite number of 
derivatives and· 1/ is to satisfy homogeneous boundary conditions. the 
convergence of the numerical procedure is fast. Due to the symmetry of the 
region shown in Fig. 2, the potential function q/ is even in ~ and odd in '1 if the 
potential on the line rt = 0 is chosen zero. Since Us and IjJ also have this property. 
v must have it as well. According to [2J, the approximate solution in the region 
infinite in direction ~ is sought in the form 

;:. ~ . (2k + 1 )1[11 cos (21 Arctan ~) 
L· II • m = L 1.... akl SIll 

k=OI=O 2 /1+,"2 'V '> 

(2.14) 

The elements of the matrix in the set (2.5) are in accordance with (2.6): 

1 

f ' (2k +,1 )ml ' (2i + 1 h!ll 
Akl. ij Sin 2 Sin 2 d/I ' 

o 

x 

'J" [2Isin(21 Arctan~) + ~cos(21 Arctan ~)J~:ysin(2j Arctan~) + ';cos(2jArctan m d-: + 
(\+;-)' -

o 

1 

(2k+l)(2i+l)rr: r (2k+l)rrl) (2i+l)rrl) 
+ 4 • cos 2 cos 2 d/I . 

o 

xc , f cos (21 Arctan :;') cos (2j Arctan ~) de 
1 +~2 - (2.15) 

o 
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The elements on the right-hand side are according to (2.7): 

I 

f . (2k+ 1)m1 
bkl = - I] SIn 2 dl1 . 

o 

:c . f d2g(~) cos (21 Arctan ~) d v 

d 
v 2 r-----;:- ( ( /1 + ,~2 -- V s o 

(2.16) 

It has been utilized that it is sufficient to integrate over a quarter of the region 
due to symmetry. 

In connection with the numerical procedure, it is noted that the terms in 
the series (2.14) belong to a strongly minimal function-set [2]. This feature 
ensures that the process is insensitive to the accumulating numerical errors and 
the matrix of the set of equations is easily inverted. A further advantageous 
property is that the matrix has non-zero elements in square blocks of order 
(n+ 1)(n+ 1) along the main diagonal only, and particularly in the main 
diagonal and in the two rows under and over the latter. 

In knowledge of the relative potential function q/, the relative field 
intensity and relative current density can be calculated and hence (1.11) and 

(1.14) yield the power loss and braking force F = P . Finally, it is noted that if 
v 

the power loss is calculated from Us only as in (3.3), the loss in a plate of infinite 
dimensions in both directions is obtained. 

3. Solution with the aid of images 

The simple geometry permits the calculation of the analogous electric 
field by an infinite number of images. Namely, the homogeneous Neumann 
boundary condition along the lines I] = ± 1 can be satisfied by an infinite 
number of image charges (Fig. 3). It is sufficient to give the expressions of the 
relative field intensity which is written as an infinite series: 

(3.1 ) 
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Fig, 3. Satisfaction of the boundary condition with the aid of an infinite number of images 

I ( p Cl. P CI.) eH = Arc tan - - Arc tan - - Arc tan -;;- + Arc tan s: + 
"2IT Y yOu 

1"" [ papa + - L (-It Arctan" -Arctan-,,- -Arctan-_- +Arctan-_--
2IT k=1 Ik1 Ik1 ok! ok! 

p Cl. P Cl. ] - Arc tan. + Arc tan, + Arc tan _ - Arc tan -_ -
Yk2 Yk2 0k2 0k2 

(3.2) 

The meaning of a, p, y and b is the same as before and bkl = t/ + 2k + b', c5 k2 = 
=ry+2k-b', Ykl =ry-2k-b', Yk2=ry-2k+b'. In the knowledge of e the 
power loss can be determined as explained previously, but it is more effective 
to derive a simpler expression with the aid of Green's theorem: 

b' 

p=4 J ry [e~(a', t/)-e~(a' +2e', ry)] dry­
o 

b' 

-4 J r7[e~( -a', ry)-e~( -a' + 2e', ry)] d1/+ 
o 

a' 

+4b' lim J [ery(~,1/)-ery((+2e',ry)]d( 
ry~b'+O -a' 

(3.3) 

It is evident that single integrals rather than double ones are to be evaluated 
here. 
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4. The results of the calculation 

According to the above discussion, the relative loss has been determined 
at different pole dimensions and pole distances. The dependence of the 
parameters has been examined by keeping the product a'b' and the distance 
c' -a' constant, and the ratio a'ib' has been varied. The results thus obtained 
with the aid of images have bee.l plotted in Figs 4.1,2 and 3. The constant value 
of the product a'b' means a constant pole surface and, in case of well utilized 

~l 
21 ~~0b'=07 1 ___ ~ ~ 00=0.6 

I ~00=05 
_________ 00=01. 

1 1 _ _____ ob'=03 
____ -00=02 

~ob'=01 o '--.1 ~~~_~~ _____ • 

02 01. 0.6 G8 10 12 1 L. 160/0 

Fig. 4.1. Relative power loss vs. the ratio a'/h' at constant pole surface and c' -a'=O 

~r 
I 

I 
j ~ 

~~Ob=07 ~-~~cib=O.6 o ooOS ------ -------= 0 b=OI. ____ --------= 0 D=03 

----oD=02 

l----ci O=01 o • 
02 0.1. 0.6 0.8 10 1.2 U 1.6 a'/b 

Fig. 4.2. Relative power loss vs. the ratio a'lh' at constant pole surface and c' - a' = 0.2 

iron, a constant pole-flux. The dimension 2(c' - a') is the distance between the 
inner edges of the pole pairs. The curves thus indicate the dependence of the 
relative power loss on the ratio of the pole-width and pole length if the distance 
between the poles and the pole flux are kept constant. 

A dotted line in Fig. 3 indicates the loss at c' - a' ~ (f). This shows that the 
interaction between the pole pairs is negligible if the relative distance between 
the inner edges of the pole pairs is greater than 1. Comparison of Figs 4.1, 2 and 



260 HANYECZ, p, 

~r 

2J,1 _~~~:~:~~ 
_-~~ot:i=05 

'11 ~-~~:~~g~ 
~~0'ti:02 

0~1 ___ ~_-----~ ~ ______ -~-_-_-_O_'t:i_'=_O_'~ 
02 01. 05 08 10 12 1 I. 1.50'/0 

Fig. 4.3, Relative power loss vs, the ratio a'/b' at constant pole surface and c' - a' = 0.5 and c' - a' -+ J: 

Fig, 5, Current distribution in the plate 

3 reveals that the loss and thus the braking force increase significantly, if the 
pole pairs are drawn nearer to each other. Therefore, if the aim is to attain a 
braking force as great as possible, the two poles should be set as near to each 
other as possible. The minimal distance is determined by the space requirement 
of the exciting coil and by the leakage between the edges of the two pole pairs 
which decreases the pole-flux. 

In Fig. 5 the current distribution in the plate has been plotted in a 
particular case. The relative dimensions are a' = 0.358, b' = 0.713, e' = 0.573. The 
relative current between two adjacent lines of current is 0.055. 
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5. Testing measurements 

To test the model and the numerical process, measurements have been 
carried out on an experimental linear motor at the Department of Electrical 
Machines of the Technical University Budapest. The essential parameters 
were: a=22.5 mm, n=47mm. c=40mm. d=71.5mm, s=1 mm. 60 =3mm, 
v=5.7 107 UQm. 

To determine the air gap flux density Ba the flux of the poles has been 
measured. Ba was not calculated from the original iron dimensions, since the 
leakage at the edges causes a part of the flux to run outside the pole edges. The 
leakage has been examined on the basis of [4J with the presumption of infinite 
permeability and prismatic poles by Schwarz-Christoffel transformation. 
According to this, in case of 60 /2a < 5 and 60/2b < 5 a more exact value of Ba is 
obtained if the transversal dimension of the poles is modified by 1.3 60 outside 
and by 0.756 0 on the side between the two poles, and the longitudinal 
dimension by 1.3 (50 on each side, and the whole flux is related to this surface. 
The modified dimensions are: a=25.6mm. b=51 mm, c=41 mm. At these 
dimensions. the relative power loss was 1.36 by variational method with 14 
terms in the approximation and 1.34 by the method of images with 10 pairs of 
image charges taken into account on both sides. These were found to be 
between 1.28 and 1.38. 

Measurements have been carried out as follows. The plate has been 
accelerated by a constant force. initially without braking. then at different 
values of air gap flux density. With the aid of the punch tape attached to the 
plate and the photo diode mounted on the pole the displacement time function 
was obtained in a large number of points. A five-degree polynomial was fit on 
these points by least square method. Hence. the velocity time and acceleration 
time functions were determined. The frictional force at different velocities was 
calculated from the acceleration without braking and thus the braking force 
was obtained from the acceleration of braked motions. The total mass of the 

Table I 
Compuced and measured L'alues of hraking force 

Br, Frric F br mca~. Fhrcomp, 

[Vsm 2
] [m s] [N] [N] [N] 

0.20 0.9 3.9 14.4 14.1 

0.20 0.6 3.9 9.7 9.4 

0.405 0.28 2.6 17.2 17.9 

0.405 0.68 4.1 44.9 43.6 

0.53 0.16 18 17.9 17.5 

0.53 0.42 3.7 45.3 46.1 

4 Periodica Polytechnica El. 26 3-4 
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moving part was 14.7 kg. It was assumed that the acceleration has no effect on 
the dependence of braking force on velocity. The measured and calculated 
values of braking force are shown in Table 1. Their comparison shows the 
maximal difference to be lower than 5~/~. 

6. Conclusions 

A method has been presented in the paper which permits the calculation 
of braking force in an eddy current brake of a linear motor. The results of the 
testing measurements indicate that the model and the numerical process 
describe the phenomena with acceptable accuracy. 

As regards the Ritz process presented. it is noted that although its 
computational requirements are excessive, it is still very effective and can be 
applied to boundary value problems of far greater complexity than the one 
solved in this paper. 

The most important result of the method described for the treatment of 
singular excitations is the faster convergence of the numerical process in energy 
norm, and experience shows the field characteristics computed from the 
approximate solution to approximate the values obtained by image charges, 
which can be regarded as exact, even in the vicinity of the singular locations. 
This is proved by the fact that in case of a sufficient number of terms in the 
approximation the power loss can be computed from (3.3) instead of (1.11) 
which is of great numerical significance. Namely, the field intensity is obtained 
as a finite series and its square appears in the formula of loss, thus a two­
variable numerical integration is necessary in (1.11), while only one-variable 
appear in (3.3). If the Ritz process had been applied directly to singular 
excitations, formula (3.3) could not have been employed. 

Finally, it is noted that computations have been carried out on the desk 
calculator EMG 666. The computational time necessary to obtain the relative 
power loss in a particular arrangement was about 4 minutes with the aid of 
image charges and 15-20 minutes by variational method applying formula 
(3.3). 

Summary 

Ritz numerical process for solving variational problems is applied to the calculation of the electric 
field in an eddy-current brake of a linear motor. An alternative method based on images for the solution is 
also discussed. The eITect of motor dimensions on braking force is examined. The results of the testing 
measurements carried out to check the calculation are also presented. -
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