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1. Introduction 

Computation of G(s), the greatest common divisor GCD of two 
polynomial matrices D(s) and C(s) is of vital importance in the frequency 
domain approach to multivariable control systems. It is useful in the problem 
of nonsingular factorization of a polynomial matrix, minimal state-space 
realization of a rational function transfer matrix, relative primeness test of two 
polynomial matrices and so on. 

The problem has been tackled by many authors and through different 
techniques. An indirect method is to find an irreducible representation by any 
known algorithm in this field and then return to find out the GCD (see, e.g., 
EMRE [3J). There are other techniques to find the GCD as a polynomial 
combination, i.e., G(s) = P(s) . C(s)+Q(s)' D(s). (see, e.g., McDuFFEE [8J), or to 
transform the composite matrix [D'(s) C(s)]' to its upper-right triangular form 
[G'(s) O'J (see e.g., WOLOVICH [9J). The most significant method seems to be the 
extension of the well-known Sylvester's matrix of two scalar polynomials to the 
matrix case to form the so-called generalized Sylvester's matrix (see, e.g., 
ANDERSON [lJ and BITMEAD [2J). 

Neither of the methods mentioned above guarantee numerical stability. 
So it was suggested to use p-adic arithmetic to compute the GCD of two 
polynomial matrices by the generalized Sylvester's matrix method. Appendix A 
contains a brief discussion of p-adic arithmetic while the routines used to 
handle p-adic objects are listed in Appendix B. Definitions necessary to the 
GCD problem are given in chapter 2. Chapter 3 describes the algorithm and the 
main theory. An example is solved in chapter 4. 

* Aspirant at the Department of Process Control, Technical University. Budapest. 
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2. Definitions 

2.1 GCRD of two polynomial matrices 

A greatest common right divisor (GCRD), GR(s) of two polynomial 
matrices D(s) and C(s) with the same number of columns is defined as a 
polynomial matrix which is the right divisor of both D(s) and C(s) and at the 
same time the left mUltiple of any other common right divisor CRD, i.e., 

C(s)= C(s)' GR(s) 

D(s)=15(s)' GR(s), and 

GR(s) = M(s) . G(s) 

where G(s) is any CRD of D(s) and C(s) 
Notes: 

i-a greatest common left divisor (GCLD) of two polynomial matrices 
is defined, and may be obtained, by using duality; 

ii - the GCDs are not unique and differ in a unimodulator factor. 

iii - if the composite polynomial matrix F(s)= [~~:;J is of full rank, 

then G R(S) will be non-singular. 

2.2 The generalized Sylvester's matrix 

Two polynomial matrices - D(s) and C(s) are relatively right prime 
(RRP) if and only if there exists an irreducible pair (with an unimodulator 
GCRD) of polynomial matrices [B(s) A(s)] with A(s) and C(s) of the same 
determinant degree i.e., cIA(s)l=clC(s)1 such that: 

A(s) . D(s) + B(s) . C(s) = 0 . (2.1 ) 

Expressing D(s) and C(s) as 

I I 

D(s)= L Dis1
-

i, C(s)= L CiS1
-

i 
i=O i=O 

(2.2) 

if K is the degree of A(s) and B(s) satisfying Eq. (2.1), then this equation will have 
the form 

(2.3) 
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where 

Do D1 Dl 0 0 

Co Cl Cl 0 0 

0 Do Dl 1 Dl 0 

SK,§ 0 Co Cl- 1 Cl 0 (2.4) 

0 0 Dl- K Dl- K + 1 Dl 
0 0 Cl K Cl- K + 1 Cl 

SI, is called the generalized Sylvester's matrix of order K. Usually Eg. (2.1) is 
written in concise form as: 

M(s)' F(s)=O (2.Sa) 

where 

M(s)= [A(s) B(s)]. (2.5b) 

and 

F(s) = [D'(s) C(s)]'. (2.Sc) 

2.3 Obsen:ability index 

If S(A, B, C, D) is the state-space description of an n-states observable 
system, then the well-known q-order observability matrix (f q is defined as: 

<2~,§[C A'C 4 'Q - 1 C'] -I? , . q- ._ ... .. n. (2.6) 

The observability index of such a system is defined as the least integer among 
the q-set which makes (f q of rank n. 

If H(s) is a p x m rational function transfer matrix, representing an 
irreducible realization of S(A. B, C, D). i.e., 

H(s) = D(s) . C - I(S) (2.7) 

then the column degrees of C(s), Vi i = 1, 2, ... , m are called the dual dynamical 
indices. Moreover, if H(s) is proper, these indices will coincide with the 
observability indices. 



268 .I10NESS . .I1. LASTOS. B. 

2.4 Echelon form 

A scalar, rectangular matrix is said to be in a row (column) echelon form if 
its elements satisfy the following conditions: 

i-the leading nonzero element of a row (column) is 1, unless the row 
(column) consists entirely of zeros; 

ii - any column (row) containing nonze~o leading element of a row 
(column) has zeros elsewhere below (to the right of) the leading 
element; 

iii - for any two nonzero rows (columns) i andj, if i <j then the leading 
nonzero element of the i!h row (column) appears to the left of (above) 
the /h one; and 

iv all the zero rows (columns) follow the nonzero ones. 

3. The algorithm description and the main theory 

Let us compute the GCRD of two polynomial matrices D(s) and C(s). of 
dimensions "p x m" and "m x m", respectively. If q is the maximum degree of 
D(s) and C(s), then they can be expressed as: 

(3.l.a) 

(3.l.b) 

The initial composite matrix, or the generalized Sylvester's matrix of order one. 
J 1 as is defined: 

(3.2) 

The following algorithm, using only scalar operations on J1, will be proven to 
give the GCRD, GR(s) of C(s) and D(s), and also to give some dynamical 
properties of the system described by the transfer function rational matrix 

H(s) = D(s)C - 1 (s) . (3.3) 

Algorithm steps: 

Step 1. Set k = 1. Reduce J(l) to the echelon form gl by means of an "m + p" 
nonsingular scalar matrix T1(S). Calculate 11 = rank of g(l). If 11 <m, 
there exists only the trivial solution, i.e., GCRD of infinite degree, and 
hence STOP, otherwise insert ~+-g(l) and continue. 
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Step 2. Set k = k + 1 and construct the k Ch block of the composite matrix qj by 
introducing g(k - 1) (the "k -1 "ch block of qj) from the "(k -1) (m + p) + 
+ 1 "Ih row, through and up to the k(m + pyh row after shifting it to the 
right by m(k -1) columns with respect to the initial block. 

Step 3. Reduce the kCIl block of qj into the echelon form g(k) by using row 
operations from the first (k - 1) blocks so that each element under the 
pivoting ones is zero, and then by row operations within the kch block 
itself by means of an "(m + p)k" transformation matrix T(k) applied to qj. 

Calculate lk = rank of qj and if lk -lk _ 1 = m go to the fourth step 
otherwise return to the second step. 

Step 4. Set v = k. The first m nonzero rows of the vch block, g(v) give the scalar 
coefficients of GR(s) arranged from the highest power and downward. 
The dual dynamical indices may be obtained from l's STOP. 

The main theory of the generalized Sylvester's matrix 

The previously described algorithm can be formulated in the following 
theorem: 

TH EO REM "The generalized resultant matrix algorithm gives the following 
information in its various steps: 

The first 2"m", nonzero rows of gv give the scalar coefficients of GR(s), 
starting from the highest power and downward, 

ii - If D(s) and C(s) are any MFRD of an "p x m" rational transfer matrix H(s), 
then the p-dual dynamical indices of the system described by H(s) are 
given by the relationship: 

10=0 and I l=-(m+p) 

where f'i number of dual dynamical indices of order i or its equivalent: 

k=2,3, ... 

{iIO<i<k}, i = 1, 2, ... , p 

where Vi - dual dynamical index of the iCh row, and 
p 

iii - The determinant degree of GR(s), 8g = n - L Vi' where n determinant 
\ i=l 

degree of C(s)." 
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Proof" 
i-To prove the first part of the theory, it will be proven first that the 

independent-variable version EV(s) of the last scalar block g(V) obtained by 
means of the algorithm is a unimodulator transformation from F(l)(s). It has 
only to be proven that E(2)(S) is related to F(1)(s) by a unimodulator matrix. 
since the transformation procedure from g(2) to g(v) is just a repetition. F(l)(s) 
can be written as follows: 

F(1)(s)~ [D'(s)C'(s)]' = 

(3.3) 

where ff(l) is defined by Eq. (3.2) and S(0(5) is defined as: 

sq+i-l I 
m o 

(3.4) 

o 

Step 1 in the algorithm is the transformation oL'F(l) into its echelon form 
g(1) by an "m + p" non-singular scalar matrix T(!), i.e., 

and the general form of g(1) is: 

A(l) 
q-l 

B(l) 
q 2 

A~l)J 
B

(l) 
q- 1 

(3.5) 

(3.6) 

where A's and B's are in the echelon form. Since the right-shift step is equivalent 
to the multiplication by the independent variable, in our case s, then for k = 2 
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[ 
SE(5) ] 

E(1)(5) = (3.7.a) 

4(1) 
. 0 

A(l) 
1 

Ail) A(l) 
q-1 

A(1) 
q 0 

0 B\}) B(l) B~1~2 B(l) 0 1 q-1 
·5(2)(5) = (3.7.b) 

0 4(1) A(l) A(l) A(1) A(1) 
- 0 1 q-2 q-1 q 

0 0 Bb
1

) B(l) 
q-3 B~1~2 B(1) 

q-1 

= <'6
2 

. 5(2)(5) . (3.7.c) 

The transformation of (11 2 to a form having the first two properties of the 
echelon form definition can be realized by a 2(m + p) nonsingular scalar matrix 
TC;'.). 

(3.8) 

The T(l) - construction, (step 3 in the algorithm) is done by two substeps. 
The first substep comprises the operations from the first block onto the second, 
while the second one those within the second block. It is obvious from the shape 
of et 2' (Eq. 3.7.b), that the first operations are from the matrices B's of the first 
block onto the matrices A's of the second one, i.e. the first subtransformation 
matrix has the form: 

I 0 0 0 

0 I 0 0 
T(2)-
1-

0 Ql I 0 
(3.9) 

0 0 0 I 

and this yields: 

-1'" • 0 40 ' • 1 Ail) 4111 
' 3 A~I~ 1 -1111 . q 0 

0 BOI B\" B'011 B'll B'" 0 
CfJi2 )= 

0 q-2 q- 1 

0 ,[111 ,[111 .fill .J~1~2 .4~1~ 1 ,[lll 
. 0 . 1 . 2 . q 

(3.10) 

0 0 B'o" B"' 1 
Bill 

q-3 B'll q-2 B'" q- 1 

Since the rows B's of the 2nd block are either zero or linearly independent, the 
transformation of this block to a form having either linearly independent rows 
or zero rows (properties 1 and 2 of the echelon form) can be carried out by an 
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elementary transformation from the rows B's to the A's or within the rows A's 
themselves i.e., the second subtransformation matrix T~2J has the form: 

I 0 0 0 

0 I 0 0 
T~2J= 

0 0 Q2 Q3 

0 0 0 I 

from Eqs (3.9) and (3.11): 

I 0 0 0 

0 I 0 0 
T(2) = T~2) . Tf) = 

0 Q2Q1 Q2 Q3 

0 0 0 I 

using the above equations, we have 

where Eb2)(S) has the echelon form with some row orders permuted. 
Or: 

where 

[
00 SOOOl+03J U?(s)= -- --- - . 

- 0 I 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

It is clear that 1 U 2(s)1 = IQ21 =1= f(s), i.e., U 2(S) is a unimodulator matrix. To 
transform Eb2J(S) into the echelon form only a rearrangement of its rows, i.e., no 
polynomial but only scalar operations, are needed and hence E(2)(S) is related to 
E(1)(S) by a unimodulator matrix, needed to continue our proof. The last step, 

E(Y)(s) = [RciS)] = (3.16.a) 

= U y(s) . E(1)(s) (3.16.b) 
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where U v(s) is a unimodulator matrix of the form 

Writing Eq. (3.16.a) in the form 

then: 

E(l1(S) = U;- l(S) . E(s) = 

C(s) = (] 1,1 (s) . R(s) 

D(s) = (] 2.1(S)· R(s) 

thus, R(s) is a CRD of C(s) and D(s). From Eq. (3.16.b) 

R(s) = U 1.1(S)· C(s) + U l,2(S)' D(s). 

If Ro(s) is a CRD, then 

hence 

R(s) = (U 1.1 (s) . Co(s) + U l,2(S) . Do(s))Ro(s) = 

= R(s) . Ro(s) 

i.e. R(s) is a left multiple for every CRD and so it is a possible GR(s). 

273 

(3.17) 

(3.1S.a) 

(3.lS.b) 

(3.19) 

(3.20) 

(3.21 ) 

ii - The second part can be proved by making use of Forney's theorem 
[4]. In that theory the following statements are equivalent, regarding a p x q 
polynomial matrix M(s) (p ~ q) 

(a) the GCD of the p x p minors of M(s) is 1 and the highest degree is v, 
(b) for any two polynomial vectors y(s) and x(s) of q and p-tuples, 

respectively, expressed as y(s) = x(s) . M(s); deg y(s) = max (deg x(i)(s) + v;}, where 
v i is the ith row index, and 1 ~ i ~ p, and 

(c) the indices Vi are such that for all k:;;; 0, dim Vk = I (k - v;), where v;. 
ilVi<K 

is the set of all n-tuples of polynomials with less than k degrees in the n-tuples 
vector space over the field of rational functions. 
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In our case M(s) = [A(s)B(s)] and by definition of the Sylvester's matrix, 
M(s)' F(s)=O. Under the constraint that A(s) and B(s) are irreducible pairs, 
statement (a) is satisfied and accordingly statements (b) and (c) are true. If the 
following sets are defined: 

JVk== {wlwff(k) =0, where w is a k(p+m) row vector} 

Uk=={u(s)lu(s)'F(s)=O and ou(s)<k} 

v;. == {v(s) I v(s) = x(s) . M(s), oxU)(s) < (k - v;)} 

and since M(s)' F(s)=O, then statements (b) and (c) show that vt= Uk and vYk 

is isomorphic to U k' From statement (c), dim ~ = I (k - v;) which is equal to 
ilvi<K 

the dimension of JV b so 

dim v;. + rank ff(k) = k(m + p) 

or its equivalent: 

ranky(k)=k(m+p) I (k-v i); k=1,2, ... , (3.22) 
(iIVi <k) 

relationship between the increment changes in the ranks of the generalized 
Sylvester's matrix yU), and the number of indices of order i, 

(3.23) 

can be obtained by direct substitution into Eq. (3.22), (see, e.g .. Bitmead [2J). 
iii - The minimum degree nmin of a realized, proper system is known to 

be given by: 

(3.24) 

and since 
(3.25) 

where C(s) is the irreducible version of C(s); then: 

(3.26) 
or: 

=n-nmin (3.27) 
where n=lc(s)l. 
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4. Example 

A numerical example will be solved to show the algorithm application, as 
well as the importance of using p-adic arithmetic to avoid numerical instability 
which arises in some problems. 

Let us have the following two polynomial matrices: 

,102 1 ,203 2 
s- + 101 S+ 101 s- + S ' 

101 -;- 101 
D(s) = 

,708 7 ,304 3 
s- +-s +- s- + 101 s + 101 101 101 

,506 5 
s- + 101 s + 101 0 

C(s) = 

0 S2 + 
11 

lIs + 101 

and the computation of their GCRD polynomial matrix, GR(s) of the general 
form: 

is needed for some design purposes. 
Using the floating point arithmetics (simple and double precision), some 

small quantity 8 must be defined as zero. Since the span and the elements of the 
generalized Sylvester's matrix are variables, they cannot be estimated in 
advance. Table (4-1) shows the computed values of GR(s) and the two 
dynamical indices Vl and V2 for different values of 8. 

It is evident from the Table that the results can be classified into groups, 
and each one gives certain results. So, some basis is needed to distinguish 
between the different results. By using p-adic arithmetic the following exact 
results are obtained for p=5419, 1'=8 (see Appendices A and B): 

[
S+1/101 

GR(s)= 
o 

i2 =7, i3 =9, 
and V2 =2 

~J 

Making use of these exact results, neither a big value of 8 (from 10- 1 up to 
10 - 3), nor a relatively small value of 8 (less than 10 - 8) is seen to give correct 



Table 4.1 
A C(lIIll){lris()lI /wtll'(,l'1I (,X<lct solulioll usillll ,,-adi!' illill flolltillll poillt arithmet ic o( differellt I: 

lIl • .(s) (i1.2(S) 

Exact s-I-I/lOl 0 

10 I 
I'(){)OOOO()()()O E 00. S -I- 4.9504946917 E-02 5.9237349778E-02 * S -I-

I J){)O(){)O(){){){lD 00 • S -I- 4.9504946917 D-02 5.9237386612D-02 * S -I-

10' 
I. (){)(){)OO(){)O()J~' 00 • S -I- 9.900990R736E-03 4.22759354111,-03 * -I-

I . OO(){){){)OOOO D 00 * S -I- 9.90099 J 2343D-03 4.2276014292D-03 * S -I-

10' 
J .(){){){){)(){){)(){ll·; 00 * S -I- 9.9(){)990R736E-03 R,456J866J66E-04. S -I-

J . OOOO(){){){)OO D 00 * S 9.9(){)99J 2343D-03 8,4552044389D-04 • S -I-

1O- 4 -.JO'l 
.. OO(){){)()()OOO /, 00 * S -I- 9.9009908736E-03 0.0 

• S + 
J ,()(){){){)O()O()O D 00 • S -I- 9.900991 2343D-03 3.2526065175D-19 • S + 

10" 
I.OO()OO(){){)OOE (){). s' + 9.9(){)9908736E-03 0.0 

• S 
-I-

I ,()(){){)O(){)OOO f) 00 • S -I- 9.9(){)99 I I 523D-03 3.7947676037D-19 • S -I-

10 <I & 10 10 
0.0 • S -I- I.O(){){)O(){)(){)OE 00 0.0 

• S 
-I-

0.0 * S -I- I ,(){)(){)O{){){){){)f) (){) - 1.1 36B683772J)-1 3 * S -I-

I 1'1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 
I 2 

0.0 

I'J 
-.J 
0-. 

r--

"" :,:..; 

Cl 
.'" 
'" 



'-" 

'" " ::l. 
o 
0.. o· 
'" '"0 
o 
'~ 
o 
::r 
::l 
o 
'" !!! 
'-I 
~ 

r Exact 

10' 

10 

10 .1--.10 ., 

10 " 

10 'I &. 10 '0 

Table 4.1 continued 

al. ,(s) al • 2 (s) 

() 

0.0 " S l- X') IOKBX4335E-02 0.0 " S + 
0.0 " S + H.910X9066B6[)-02 1.3322672% /)-15" S + 
1.1175H76g95/~-8 "S -I- 0.0 U)()OOOOOOOO E 00 " S -I-

1.6763X0634JD-OR " S -I- 0.0 I . OOOOOOO()OO f) 00 " S -I-

1.1175K76895E -08 " S -I- 0.0 0.0 " S -I-

1.6763806343[)-OB • S + 0.0 0.0 " S + 
1.0615373025E-09 " S + 0.0 0.0 " S + 

- 1.592305H421D-09 " S -I- 0.0 0.0 " S + 
0.0 " S -I- 1.0510270605E-II 0.0 " S + 
0.0 " S -I- 1.5765406056D-II I 0.0 " S + 

1.000000000010 00 

I.OOOOOOOOOOJ) 00 

9.RR5R736455E-03 

9.B858747054D-03 

1.000000000010 00 

I ,()OOOOOOO(}O D 00 

I '(){)OO(){)(){)()OE 00 

I. OO(){){)(){){)OO D ()() 

I.OO(){)(){){){){)()E 00 

I.(){)O()()(){){)(){)[) 00 

V 1 

2 

2 

2 

2 

2 

" Cl 

~ .... 
~ 

::! 
Cl 
:;~ 

Cl 
.." . .., 
:::: 
t>, 
Cl 

'" r:: 
-J 

'" V, 
-J 

Cl 
~ 
'" CS 
:., 

!2 
~ 
Cl 

'" 

'..J ...., ...., 
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results in the example. The results are only exact up to eight digits for a range of 
(; between 10 4 and 10 8. It is also obvious that wrong bands of (; may give 
wrong observability indices. 

5. Conclusion 

To compute the GCD of two polynomial matrices from their generalized 
Sylvester matrix, a complete theory with an easy proof is offered. In light of this 
proof a systematic algorithm has been constructed for the numerical use. 

In converting this algorithm into a set of FORTRAN IV subroutines, the 
classical convergence problem arose, i.e., even if it is known that the algorithm 
has a numerically stable band, how can it be found? The use of some exact 
computation techniques is suggested to overcome this difficulty. Actually, the 
p-adic techniques have been successfully applied for the exact computation of 
many problems. This technique is hoped to be a useful basis for another study 
on the best numerical method for computing the GCD of two polynomial 
matrices. 

Appendix A: p-adic arithmetics. 
A p-adic arithmetic system is identified as residue arithmetic modulo pr. In 

this system, choosing a certain prime p and an even number r, any rational 
number Cf., will be represented in r-digits having the value from "0" to "p -1". 
The computation according to this method will be exact !f numerator and 
denominator of the computed number will be within a prescribed bound given by 
pr/2/j2. For more details see KRISHNAMURTHY [5, 6]. In the example given to 
illustrate the computation of the GCRD we use the self denominator technique. 
On item will be here reproduced from [6J for convenience. 

In the self-denominator technique, the p-adic representation of a rational 
number Cf. = a/b is executed through 2(r + 1) dimensional array rather than 
(r + 1) dimensional one. The first half of this array, M represents a/b, while the 
second half E, represents the denominator b. In each half the first r-digits give 
the mantis sa, and the (r + 1 )th digit gives the exponent. The four basic arithmetic 
operations between any two p-adic numbers (M1, El) and (M2, E2) can be 
abbreviated in this technique as follows: 

(M1, El) c (M2, E2)=(M3, E3) 
where 

M3 = MIc M2 in all operations; 
E3 = 1cm (E 1, E2) in addition and subtraction; 
E3 = El . E2 in multiplication; and 
E3 = Ell M2 . E21p in division 

where I ·Ip is the absolute value in p-adic sense. 
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To recover the conventional number again from its p-adic code (M, E) the 
following two functions are defined: 

VALUE(X)= {X 
X_pr 

where X is an integer, 
r - 1 

o ::; X ::; (pr - I )/2 
otherwise 

f(R) = L hi' pi 
i=Q 

where R is an (r + 1)-array representing a p-adic number and hi is the integer 
value in the ith position. Hence, 

a=VALUE(I(M' E» 

b= feE) 

Appendix B. Subroutines' list 

In this appendix, the used subroutines are listed with the accomplished 
arguments 

BI- CNVHAN(A,B,H,P,N) 
gives the representation of A/B (N = r + 1) in the p-adic form in the N­
vector H 

B2- CNVSD(A,B,HSD,P,N) 
as Bl but HSD is of dimension 2N and gives the self-denominator 
representation. 

B3- COMP(Hl,HC,P,N) 
HC is the p-adic complement of HI. 

B4- ADD(HI,H2,HS,P.N) 
HS is the p-adic sum of HI and H2. 

BS- SUB(Hl,H2,HD,P,N) 
HD is the p-adic difference of H2 from HI. 

B6- MULT(Hl,H2,HM,P,N) 
HM is the p-adic product of HI and H2. 

B7- DIV(Hl,H2,HQ,P,N) 
HQ is the p-adic quotient of HI and H2. 

BS- GCD(H I,H2,HG,P,N) 
HG is the gcd of two integers HI and H2 (in p-adic). 

5* 
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B9- HABS (Hl,H2,HA,P,N) 
HA is the absolute value of H 1 and H2 m p-adic sense. 

B10- LCM(H1.H2,HL,P,N) 
HL is the !cm of Hl and H2. 

Bll- ECHE(A,E,l',1l,N2,RANK.P,NI 
E is the echelon form of a given N j >: N2 x 2N single array A where N 1 
and N2 are the numbers of rows and columns of A. 

Summary 

An ah!orithn1 is £!i'.,en la achi~Ve nun1t:rical stability durin~ th:.:: ~:.,timatii..)n of th,,; GCD of two 
polynomial ~atrices. It i;a5 been found that the U:SC l)[ p-adic arithmetic will guaianttt exact COD1putatlGil 

within prescribed bounds A complete theory of this algorithln \vith pruof is ab\) given. 
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