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1. Introduction

Computation of G(s), the greatest common divisor GCD of two
polynomial matrices D(s) and C(s) is of vital importance in the frequency
domain approach to multivariable control systems. It is useful in the problem
of nonsingular factorization of a polynomial matrix, minimal state-space
realization of a rational function transfer matrix, relative primeness test of two
polynomial matrices and so on.

The problem has been tackled by many authors and through different
techniques. An indirect method is to find an irreducible representation by any
known algorithm in this field and then return to find out the GCD (see, e.g.,
EMRE [3]). There are other techniques to find the GCD as a polynomial
combination, i.e., G(s)= P(s) - C(s)+ Q(s) - D(s), (see, e.g., MCDUFFEE [8]), or to
transform the composite matrix [D'(s) C'(s)]’ to its upper-right triangular form
[G'(s) 0] (see e.g., WoLoVICH [9]). The most significant method seems to be the
extension of the well-known Sylvester’s matrix of two scalar polynomials to the
matrix case to form the so-called generalized Sylvester’s matrix (see, e.g.,
ANDERSON [17 and Bit™MEAD [2]).

Neither of the methods mentioned above guarantee numerical stability.
So it was suggested to use p-adic arithmetic to compute the GCD of two
polynomial matrices by the generalized Sylvester’s matrix method. Appendix A
contains a brief discussion of p-adic arithmetic while the routines used to
handle p-adic objects are listed in Appendix B. Definitions necessary to the
GCD problem are given in chapter 2. Chapter 3 describes the algorithm and the
main theory. An example is solved in chapter 4.
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2. Definitions
2.1 GCRD of two polynomial matrices

A greatest common right divisor (GCRD), Gg(s) of two polynomial
matrices D(s) and C(s) with the same number of columns is defined as a
polynomial matrix which is the right divisor of both D(s) and C(s) and at the
same time the left multiple of any other common right divisor CRD, i.e.,

C(s)=C(s) Gg(s)
D(s)=D(s) - Gg(s), and
Grl(s)=M(s)- G(s)

where G(s) is any CRD of D(s) and C(s)
Notes:

1 — a greatest common left divisor (GCLD) of two polynomial matrices
is defined, and may be obtained, by using duality;

ii — the GCDs are not unique and differ in a unimodulator factor.

b (S)J is of full rank,

iii — if the composite polynomial matrix F(s)= I:C(s)

then Gg(s) will be non-singular.

2.2 The generalized Sylvester’s matrix

Two polynomial matrices — D(s) and C(s) — are relatively right prime
(RRP) if and only if there exists an irreducible pair (with an unimodulator
GCRD) of polynomial matrices [B(s) A(s)] with A(s) and C(s) of the same
determinant degree i.e., ¢| A(s)| = ¢]C(s)] such that:

A(s)- D(s)+ B(s)- C(s)=0. (2.1)

Expressing D(s) and C(s) as

! {
D(s)= Y D;s'™ C(s)= 3 Cis'™' (2.2)

i=0 i=0

if K is the degree of A(s) and B(s) satisfying Eq. (2.1), then this equation will have
the form

[AO BO Al Bl e AK BK]‘SK==O (23)
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where
D, D, D, 0 |
Co C, ... ( .. 0
Dy ... D, D, ... 0
S Co Ci G 0 (2.4)
D,_x Di_gsy ... D,
L0 0 ... Cx Cigsy ... C |

Sy is called the generalized Sylvester’s matrix of order K. Usually Eq. (2.1) is
written in concise form as:

M(s)- F(s)=0 (2.52)
where

M(s)=[A(s) BGs)]. (2.5b)
and

Fs)=[D's) Cs)]. (2.5¢)

2.3 Observability index

If S(A. B, C, D) is the state-space description of an n-states observable
system, then the well-known g-order observability matrix €, is defined as:

CLE[C AC ... AT'CT. g=12....n. (2.6)

The observability index of such a system is defined as the least integer among
the g-set which makes €, of rank n.

If H(s) is a pxm rational function transfer matrix, representing an
irreducible realization of S(A4. B, C. D), i.e..

H(s)=D(s)- C~}(s) 2.7)

then the column degrees of C(s), v; i=1, 2, . . ., mare called the dual dynamical
indices. Moreover, if H(s) is proper, these indices will coincide with the
observability indices.
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2.4 Echelon form

A scalar, rectangular matrix is said to be in a row (column) echelon form if

its elements satisfy the following conditions:

1 — the leading nonzero element of a row (columnj) is 1, unless the row
(column) consists entirely of zeros;

ii — any column (row) containing nonzero leading element of a row
(column) has zeros elsewhere below (to the right of) the leading
element;

iii — for any two nonzero rows (columns) i and j, if i <j then the leading
nonzero element of the i row (column) appears to the left of (above)
the j one; and

iv — all the zero rows (columns) follow the nonzero ones.

3. The algorithm description and the main theory

Let us compute the GCRD of two polynomial matrices D(s) and C(s). of
dimensions “p x m” and “m x m”, respectively. If ¢ is the maximum degree of
D(s) and C(s), then they can be expressed as:

D(s)=Dys?+D;s? '+ ... +D,_s+D, © (3.1.a)
Cl)=Cos?+Cys?7 '+ ... +C_ s+ C, (3.1.b)

The initial composite matrix, or the generalized Sylvester's matrix of order one,

Z ! as is defined:
Fo_|Po Poo P Dt (3.2)
Co C; ... Couy C
The following algorithm, using only scalar operations on .# !, will be proven to
give the GCRD, Gg(s) of C(s) and D(s), and also to give some dynamical
properties of the system described by the transfer function rational matrix

H(s)=D(s)C ™ !(s). ' (3.3)

Algorithm steps:

Step 1. Set k=1. Reduce # to the echelon form &' by means of an “m+p”
nonsingular scalar matrix T!(s). Calculate [, =rank of §W. If [, <m,
there exists only the trivial solution, i.e., GCRD of infinite degree, and
hence STOP, otherwise insert €« &) and continue.
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Step 2. Set k=k+ 1 and construct the k" block of the composite matrix € by
introducing €%~V (the “k — 17" block of €) from the “(k—1) (m+p)+
+ 17" row, through and up to the k(m+ p)* row after shifting it to the
right by m(k—1) columns with respect to the initial block.

Step 3. Reduce the k" block of € into the echelon form &* by using row
operations from the first (k— 1) blocks so that each element under the
pivoting ones is zero, and then by row operations within the k* block
itself by means of an “(m + p)k” transformation matrix T® applied to €.
Calculate [, =rank of ¥ and if [,—/,_,=m go to the fourth step
otherwise return to the second step.

Step 4. Set v=k. The first m nonzero rows of the v* block, & give the scalar
coefficients of Gg(s) arranged from the highest power and downward.
The dual dynamical indices may be obtained from I's STOP.

The main theory of the generalized Sylvester’s matrix

The previously described algorithm can be formulated in the following
theorem:

THEOREM “The generalized resultant matrix algorithm gives the following

information in its various steps:

1 — The first 2“m”, nonzero rows of & give the scalar coefficients of Gg(s),
starting from the highest power and downward,

it — If D(s) and C(s)are any MFRD of an “p x m” rational transfer matrix H(s),
then the p-dual dynamical indices of the system described by H(s) are
given by the relationship:

vi=2l—(L +-y), i=0,1....v

it

lo=0 and 1_1= -—(m+[7)

where y; — number of dual dynamical indices of order i or its equivalent:
lk=(nz+p)k—Z(k—vi) k=23, ...
{il0<i<k}, i=1,2,...,p

where v; — dual dynamical index of the i Tow, and
iii — The determinant degree of G(s), 6,=n— Y v;, where n — determinant
i=1

kel

degree of C(s)
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Proof:

1 — To prove the first part of the theory, it will be proven first that the
independent-variable version E*(s) of the last scalar block &" obtained by
means of the algorithm is a unimodulator transformation from F‘*)(s). It has
only to be proven that E®)s) is related to F*)(s) by a unimodulator matrix,
since the transformation procedure from & to é ™ is just a repetition. F*)(s)
can be written as follows: '

F(s)2[D'(s)C'(s)]' =
= Fgt) (3.3)
where # 'V is defined by Eq. (3.2) and S%(s) is defined as:
satity O
S0(s) = - sl (3.4)

O L

Step 1 in the algorithm is the transformation of #‘V into its echelon form
&'V by an “m+ p” non-singular scalar matrix T", i.e

T(l) 7 (1) . Sl)(s)_’]‘(l) F(l)(s)

__:éé(l) . S(“(S) =
£ EU)s), (3.9
and the general form of £ is:
co_ |AG AT AR Al A y
"l o BM» B B B (3.6)
4] 1 M qg—2 qg—1

where A’s and B’s are in the echelon form. Since the right-shift step is equivalent
to the multiplication by the independent variable, in our case s, then for k=2
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F)g)— [ SE(s) B

| Es) (3.7.2)
(AL AP AP AR, 4D 0
0 BY BY ... B2, BY, 0

- . | sPe= 37
0 AP AP AR, AL, Al
L0 0 BY ... BY, BY, BY,

=%, S%)s). (3.7.0)

The transformation of €, to a form having the first two properties of the
echelon form definition can be realized by a 2(m + p) nonsingular scalar matrix
T(Z)'

(62-—: T(Z)@z (3.8)

The T'® — construction, (step 3 in the algorithm)is done by two substeps.
The first substep comprises the operations from the first block onto the second,
while the second one those within the second block. It is obvious from the shape
of 4, (Eq. 3.7.b), that the first operations are from the matrices B’s of the first
block onto the matrices 4’s of the second one, i.e. the first subtransformation
matrix has the form:

I 0 00
L lo 1 00 )
TP = (3.9)
00, I 0
0 0 0 I
and this yields:
A A A A A, Al 0
{1} (1) .,“ H.I_‘ (l_l O
gwo| 0 BB B B 0 (3.10)
SN VR rTO (AR (TR y T (EUM EAl '
0 0 By BY ... B, BY, B,

Since the rows B’s of the 2nd block are either zero or linearly independent, the
transformation of this block to a form having either linearly independent rows
or zero rows (properties 1 and 2 of the echelon form) can be carried out by an
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elementary transformation from the rows B’s to the A’s or within the rows A’s
themselves i.e., the second subtransformation matrix T4 has the form:

I 0 0 O
O 1 0 O
TQ = (3.11)
0 0 €, 0O
00 0 I
from Eqgs (3.9) and (3.11)
I 0 0 0
0 I 0. 0
TH=T¢ T{¢= (3.12)
0 0,0, 9, 0Os
0 O 0 I

using the above equations, we have

, E(s) . | SEMS) .
T . EQ(5)= =T®. {3.13)
E§9 E

where E§(s) has the echelon form with some row orders permuted.
Or:

ES(s)=U,(s)E'M(s) (3.14)
where
U(s)= [Q: 5Q, QN"Q:&} . (3.15)
0 I

It is clear that | U,(s)| =|Q, | #1(s), 1.e., U,(s) i1s a unimodulator matrix. To
transform ES(s) into the echelon form only a rearrangement of its rows, i.e., no
polynomial but only scalar operations, are needed and hence E'?)(s) is related to
E%(s) by a unimodulator matrix, needed to continue our proof. The last step,

E(v)(s)= [Rés)} — (316&)

=U(s)- E"s) (3.16.b)
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where U (s) is a unimodulator matrix of the form

U (s)= [Uu(s) U1.2(5)} .
Uj.(s) Us.,(s)

Writing Eq. (3.16.a) in the form

EMs)=U; \(s)- E(s)=
_ [?1.1(5) []'1,2(5)j] (3.17)

C(s)=U, 1(s)" R(s) (3.18.a)

then:

D(s)=U, 4(s)" R(s) (3.18.b)
thus, R(s) is a CRD of C(s) and D(s). From Eq. (3.16.b)
R($)=U;1(s) C(s)+ U, 5(s)- D(s). (3.19)
If Ry(s) is a CRD, then

C(s)=Co(s) " Ro(s), D(s)=Dyfs) " Ro(s) (3.20)
hence
R(s)=(U,1(5) - Co(8)+ Uy 2(5) - Dols)Rols)=

=R(s) - Ry(s) (3.21)

Le. R(s) is a left multiple for every CRD and so it is a possible Gg(s).

ii — The second part can be proved by making use of Forney’s theorem
[4]. In that theory the following statements are equivalent, regarding a px g
polynomial matrix M(s) (p=gq)

(a) the GCD of the p x p minors of M(s) is 1 and the highest degree is v,

(b) for any two polynomial vectors y(s) and x(s) of g and p-tuples,
respectively, expressed as y(s) = x(s) - M(s); deg y(s)=max (deg x'(s) + v;), where
v, is the i row index, and 1<i<p, and

(c) the indices v; are such that for all k20, dim V= > (k—v,), where I}

iiv,‘<K
is the set of all n-tuples of polynomials with less than k degrees in the n-tuples
vector space over the field of rational functions.
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In our case M(s)=[A(s)B(s)] and by definition of the Sylvester’s matrix,
M(s) - F(s)=0. Under the constraint that A(s) and B(s) are irreducible pairs,
statement (a) is satisfied and accordingly statements (b) and (c) are true. If the
following sets are defined:

N = {w|wF® =0, where w is a k(p+m) row vector}

U,={u(s)|u(s) F(s)=0 and du(s)<k}

I

Vi={u(s)|v(s)=x(s) - M(s), xs) < (k —v,)}

il

and since M(s) - F(s)=0, then statements (b) and (c) show that Vi = U, and 4",
isisomorphic to U,. From statement (c),dim ¥,= > (k—v;)whichisequalto
ilvi<k

the dimension of A", so

dim V, +rank Z® =k(m+ p)

or its equivalent:

rank F®=k(m+p) — Y (k—v); k=1,2,..., (3.22)

{ijvi<k}

relationship between the increment changes in the ranks of the generalized
Sylvester’s matrix # ), and the number of indices of order i,

vi=2L—(o +1 o)) (3.23)

can be obtained by direct substitution into Eq. (3.22), (see, e.g.. Bitmead [2]).
iii — The minimum degree n,,;, of a realized, proper system is known to
be given by:
b
Hein = 0. Vi (3.24)
i=1
and since
C(s)=C(s) - Gg(s) (3.25)

where C(s) is the irreducible version of C(s); then:

|C(s)|=C(s)[| Grls)] (3.26)
or:
692 Ggls)=
=N—Tyin (3.27)

where n=|C(s)|.
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4. Example

A numerical example will be solved to show the algorithm application, as
well as the importance of using p-adic arithmetic to avoid numerical instability
which arises in some problems.

Let us have the following two polynomial matrices:

s 021 203 2 ]
B e T R T TR T TR oY
D(s)= .
g8 T sy,
101”7 101 101° 7 101 |
RN 0 ”
101° ™ 101
Cls)= .
0 s+ 11s +1_6T

and the computation of their GCRD polynomial matrix, Gg{s) of the general
form:
Gls) = |:a1. 1(s) al.z(S?:]
a, (s) a, ,(s)
is needed for some design purposes.

Using the floating point arithmetics (simple and double precision), some
small quantity e must be defined as zero. Since the span and the elements of the
generalized Sylvester’s matrix are variables, they cannot be estimated in
advance. Table (4-1) shows the computed values of Gg(s) and the two
dynamical indices v, and v, for different values of &.

It is evident from the Table that the results can be classified into groups,
and each one gives certain results. So, some basis is needed to distinguish

between the different results. By using p-adic arithmetic the following exact
results are obtained for p=5419, r=8§ (see Appendices A and B):

. __[54—1/101 o}
r(S)= 0 i

ly=4, 1,=17 11=9,
vi=1 and v,=2

Making use of these exact results, neither a big value of ¢ (from 10~ up to
1073), nor a relatively small value of ¢ (less than 1078) is seen to give correct



A comparison between exact solution using p-adic and floating point arithmetic of different «

Table 4.1

£ ay 4 (3)
Exact s+ 17101

101 1.0000000000E 00 « S -+
1.0000000000D 00 « §  +

10-2 1.0000000000E 00 « S +
1.0000000000D 00 « § -+

(03 1.0000000000E 00 « S+
1.0000000000D 00 xS+

10-4 10" 1.0000000000E 00 « S+
1.0000000000D 00 « S -+

10 1.0000000000E 00 4« S -+
1.0000000000D 00 « §  +

1079 & 10710 0.0 xS
0.0 xS

4.9504946917E-02
4.9504946917D-02
9.9009908736 K-03
9.9009912343D-03
9.9009908736£-03
9.9009912343D-03
9.9009908736£-03
9.9009912343D-03
9.9009908736E-03
9.9009911523D-03
1.0000000000E 00
1.0000000000D 00

ay, 2(s)

0
5.9237349778E-02 « S
5.9237386612D-02 « S

4.2275935411E-03 «
4.2276014292D-03 « S

8.4561866166E-04 « S
8.4552044389D-04 « S

0.0 ® S
3.2526065175D-19 « §

0.0 xS
3.7947676037D-19 & §

0.0 xS

- 1.1368683772D-13 & S

+ o+ o+ o

o+ 4+

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0

9LT

'SSINOW

W

g SOLNYT
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Table 4.1 continued

Exact

0!

1072

10731077

1o

1072 & 10710

0.0
0.0

L H75876895E-8

ay {s)

xS ES
PR S
xSk

1.6763806343D-08 &« §  +
LIT75876895E-08 » S +
1.67638006343D-08 « S +
—1.0615373025E-09 « S+
—-1.5923058423D-09 « S -+

0.0
0.0

P
S

‘‘‘‘‘ B.9108884335E-02
- 8.9108906686D-02

0.0
0.0
0.0
0.0
0.0
0.0

LOS10270605E-11
1.5765406056D-11

ty (%) v,
{

0.0 +» S+ 1.0000C0000OE 60 |
1.332267296 D-15 . S+ 1.00006000000D 00
LOOO0OOOCOOE 00 « S -+ 9.8858736455E-03 l
£.0000000000D 00 «» S+  9.8858747054D-03
0.0 « S - L0O000C000000E 00 )
0.0 * S+ L0000000000D 00
0.0 S+ 1.000000000OE 00 N
0.0 xS+ 1.0000000000D 00
0.0 « S+ 1.0000000000E 00 )
0.0 « S -+ L0O000000000D 00

YOSTAIQ NOWWOD LSTLVIYD FHL 40 NOILVINdINOD

LLT
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results in the example. The results are only exact up to eight digits for a range of
¢ between 107* and 1078, It is also obvious that wrong bands of & may give
wrong observability indices.

3. Conclusion

To compute the GCD of two polynomial matrices from their generalized
Sylvester matrix, a complete theory with an easy proofis offered. In light of this
proof a systematic algorithm has been constructed for the numerical use.

In converting this algorithm into a set of FORTRAN IV subroutines, the
classical convergence problem arose, i.e., even if it is known that the algorithm
has a numerically stable band, how can it be found? The use of some exact
computation techniques is suggested to overcome this difficulty. Actually, the
p-adic techniques have been successfully applied for the exact computation of
many problems. This technique is hoped to be a useful basis for another study
on the best numerical method for computing the GCD of two polynomial
matrices.

Appendix A: p-adic arithmetics.

A p-adic arithmetic system is identified as residue arithmetic modulo p". In
this system, choosing a certain prime p and an even number r, any rational
number «, will be represented in r-digits having the value from “0” to “p—1".
The computation according to this method will be exact if numerator and
denominator of the computed number will be within a prescribed bound given by
p 2/\/5. For more details see KRISHNAMURTHY [3, 6]. In the example given to
illustrate the computation of the GCRD we use the self denominator technique.
On item will be here reproduced from [6] for convenience.

In the self-denominator technique, the p-adic representation of a rational
number a=a/b is executed through 2(r+ 1) dimensional array rather than
(r+ 1) dimensional one. The first half of this array, M represents a/b, while the
second half E, represents the denominator b. In each half the first r-digits give
the mantissa, and the (r + 1) digit gives the exponent. The four basic arithmetic
operations between any two p-adic numbers (M1, E1) and (M2, E2) can be
abbreviated in this technique as follows:

(M1, E1) = (M2, E2)=(M3, E3)

where
M3=MI1-M2 in all operations;
E3=Ilcm (E1, E2) in addition and subtraction;
E3=El-E2 in multiplication; and
E3=E1|M2-E2|, in division

where | - |, is the absolute value in p-adic sense.



COMPUTATION OF THE GREATEST COMMON DIVISOR 279

To recover the conventional number again from its p-adic code (M, E) the

following two functions are defined:

X O<X<(p—1)2

VALUE(X)=
) { X—p"  otherwise

where X is an integer,

where H is an (r+ 1)-array representing a p-adic number and h; is the integer
value in the ith position. Hence,

a=VALUE(I(M - E))

b=I(E)

Appendix B. Subroutines’ list

In this appendix, the used subroutines are listed with the accomplished

arguments

B1-

B2-

B4-

BS-

B6-

B7-

B§-

CNVHAN(A,B.H.P,N)
gives the representation of A/B (N=r+ 1) in the p-adic form in the N-
vector H

CNVSD(A,B,HSD,P.N)
as Bl but HSD is of dimension 2N and gives the self-denominator
representation.

COMP(H1,HC,P,N)
HC i1s the p-adic complement of H1.

ADD(H1,H2,HS.P.N)
HS is the p-adic sum of H1 and H2.

SUB(H1,H2,HD.P.N)
HD is the p-adic difference of H2 from HI.

MULT(H1,H2,HM.P.N)
HM is the p-adic product of H1 and H2.

DIV(H1,H2,HQ.P.N)
HQ is the p-adic quotient of H1 and H2.

GCD(H1,H2,HG,P,N)
HG is the ged of two integers ‘H!1 and H2 (in p-adic).
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B9- HABS (H1.H2,HA.P.N)
HA is the absolute value of H1 and H2 in p-adic sense
R10- LCM(H1LH2ELP.N)
HL s zhe h:m of H1 and H2.
Bll- ECHE(A,E,NI1.N2.,RANK.P.N)
E is the echelon form of a given N1 x N2 x 2N single array A where N1

and N2 are the numbers of rows and columns of A

Summary

I'e

G
0O
it
o
s}
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B3
<

An algorithm is given to achigve numerical stability during the estimation of ths
polynomial matrices. It has been found that the use of p-adic arithmetic will guarantee exa ot computatlion
within prescribed bounds. A complete theory of this algorithm with prool is alsc
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