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When designing Fourier analyzers several error sources must be taken 
into account. In this article after some introductory definitions the errors of the 
Direct Fourier Transform (DRFT) method are summed up, and then some are 
treated in detail. 

1. Groups of signals and spectra 

Classification of signals 

Figure 1 shows a common classification of signals [1]. The definitions of 
the enumerated categories: 

a) A signal is deterministic if and only if it can be represented by explicit 
mathematical relationships. Any repeated measurement of the source 
phenomenon results in the same time function. 

b) x(t) is periodic if and only if there exists any T for which x(t):=x(t+ T) 
for any real t. 

c} At a difference from [lJ we define complex periodic signals as periodic 
signals which can be expanded into Fourier series. So the sinusoidal signal is a 
special case of complex periodic signals. 

d) x(t) is sinusoidal if and only if it can be described by the following 
formula: 

where 
x = amplitude, 
f = frequency, 

x(t}=X sin (2nft+ cp), 

cp = initial phase angle. 
e) Almost periodic are the signals that are composed of sinusoidal signals, 

but are not periodic: that is, the ratio of two frequencies in the signal is not 
rational. 

* Electronic Measuring Gear Works. 
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Signals 

------==---=---c --=-----=~--~ 
deterministic stochastic 

, non periodic . stationary: . nonstationary 
I~ I~ __ 

complex periodic i almost periodic. transient • ergodic nonergodic 
I 

sinusoidal 

Fig. 1. Classification of signals 

f) From the deterministic signals not mentioned yet we define as transient 
the signals that can be Fourier-transformed, that is, 

x 

S Ix(t)ldt<cc. 
-x 

g) Stochastic signals are all the signals other than deterministic. 
h) Stochastic signals are sample functions of random processes. A random 

process is stationary in the wide sense if and only if the first- and second-order 
moments and joint moments are time-invariant. 

i) Stationary random processes are ergodic if and only if ensemble 
averages (averages over sample functions) do not differ from time averages over 
a sample function. 
For practical reasons sinusoidal, complex periodical and almost periodical 
signals will be referred to as sine-t.vpe signals. 

Definitions of energ}' spectra 

a) Energy density spectrum (EDS) 
If the time function x(t) can be Fourier transformed, then by definition, 

T 

E(f)=llim J x(t)e-j21tfldtI2 
T-x T -2 

(1) 

is the EDS of x(t). In words, E(f) is the absolute square value of the Fourier 
transform of x(t). It can be easily shown that 

fa 
S E(f) df 

fa-A{-
(2) 
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gives the signal's energy carried in the band 

Since the condition of F ourier transforms is 

x 

J Ix(t)ldt<CG, 
-x 

the EDS is only defined for transient signals. 

b) Power spectrum (PS) 
For signals which can be composed from sine waves: 

ex 
x(t)= I c

n
e j (21tfnI-i-<Pn) , 

n= x 

that is, for sine-type signals, the power spectrum is defined as: 

p(f)={lcnI2 if f=fn' 
o elsewhere, 

(3) 

where P(f) denotes the power carried by the signal at frequency f 

c) Power density spectrum (PDS) 
For ergodic stochastic processes the auto correlation function is defined 

as: T 

1
. 1 ~ 

R(rJ= Im J x(t)x(t+r)dt. 
, T-x T T 

The PDS is defined by -2 
x 

S(f)= J R(r)e- j2
"

fr dt. 
-ex 

It can be shown that 
fo+!Jf 

J - S(f) df (4) 
fo-A{-

gives the power carried in the band ~o - i, fo + iJ . Defining the Dirac 

delta operaton b(t) by 

x 

J y(t)b(t) dt = y(O) , 
-ex 
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and dealing with b(t) as a "function" (though in the strict sense it is not), it can be 
shown that for sine-type signals 

x 

S(f)= L ICnI2b(f-j~) (5) 
-x 

has the same practical meaning as for stochastic signals. Notice that (5) differs 
from (3) only in the Dirac delta mUltiplicators. 

It can be proven [lJ that there exists another way to compute S(f): 
T 

S(f)=E{lim ~I f x(t)e-j21tfCdtI2} 
T~x T T 

-2 

for stochastic and sine-type signals as well. 
The expression T 

~ I J x(t)e - j21tft dt r 
2 

is often called periodogram. 

2. Measuring principles of spectra 

(6) 

On the basis of the above expressions there are several ways to obtain 
spectra. They can be classified into three main groups. 
a) Use of bandpass filters 

On the basis of (2) and (4), let the signal pass through bandpass filters and 
measure the power (energy) on their outputs. This principle is used e.g. in the 
heterodyne spectrum analyzers. 
b) Computing R(r) 

For sine-type and stochastic signals an estimate R(r) can be computed and 
this can be used to obtain the spectrum estimate: 

Performing FFT, a well established method. 
- Using identification methods to estimate parameters of a linear 

stochastic process model; this technique gives generally a better resolution 
than the former one, but: 

- needs a big computing capacity; 
needs some a priori knowledge of the spectrum; 

- the methodology is still deficient. 
c) Based on DRFT 

Taking the finite Fourier transform of x(t) and then the absolute value of 
its 2nd power, the energy spectra can be achieved, disregarding multipliers (see 
(1) and (6)). 
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The speed of FFT techniques provides superiority over direct R(r) 
estimation; at lower frequencies the increased stability of digital signal 
processing, the higher resolution and use of total information provide 
superiority over the band pass filter method. That is why our attention is 
focused on the Direct Fourier Transform (DRFT) method. 

3. Errors introduced by DRFT 

DRFT introduces deterministic and stochastic errors, that are sum­
marized in this chapter. 

a) Sampling 
Sampling means the transformation of the continuous-wave signal to a 

finite duration pulse train (Fig. 2). Due to the Nyquist sampling theorem, the 
sampling frequency has to be at least twice as high as the highest frequency 
present in the analyzed signal: 

1 
fs= Lit >2B. 

In order to avoid aliasing a lowpass filter must be used before sampling; this 

filtering limits the signal frequency to (1,25 = _1_). The truncation in time 
2Lit 

domain can be modelled by multiplying by a so-called time window. This 
multiplication means convolution in the frequency domain: the resolution 
worsens, and because of lags, farther points of the exact spectrum influence the 
actual value of the transformed function. This phenomenon is called leakage. 

When analysing a sine wave, S(f) should consist of two Dirac b - s. The 
convolution with the window function means that S(f) consists of two, 
appropriately positioned window functions (Fig. 4). Now, using DRFT yields 

x(t) 

Fiy. 2. Sampling 
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Fig. 3. The rectangular window function 

fo 

Fig. 4. DRFT spectral estimation of a sine wave 

().f( f ) 

T 

S(f) 

fo 

spectrum points in the ~ positions alone. So if ~ =I fo, the maximum S(j) value 

is not equal to I ~j2 (Fig. 5). Thus, the spectra-based sine amplitude 

measurement is distorted if ; =I fo. Plotting this distortion as a function of the 

sine frequency fo, the diagram of Fig. 6 can be obtained. This effect is called 
picket fence effect and depends on the window shape. All effects of truncation 
can be modified by modifying the truncating function (window function). 

b) Quantization 
In order to be manageable for a digital processor, each sampled value is 

transformed to a finite-bit number. This nonlinear operation is difficult to 
investigate indeed; some recent work has been reported in [2J. If the quantum 
size is small enough in comparison with the signal amplitude (e.g. 10%), the 
effect of quantization can be well modelled by an additive, uniform amplitude 
distribution white noise (Fig. 7). The distortion of second-order moments (e.g. 
spectra) affected by quantization can be eliminated by the so-called dither­
technique (Fig. 8). 
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Fig. 7. The model of quantization noise 
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If d(t) is a uniform distribution independent white noise between [ -~, ~J ' (d = k . q where q denotes the quantum size, and k is a postitive 

integer). then there will be no distortion due to quantization, only an additive 
constant should be removed. Instead of the uniform distribution, noise signals 
of other distributions may be chosen, which are easier to produce (Gaussian, 
sinusoidal), with a standard deviation er> q, but these dithers only reduce and 
do not eliminate the distortion. 

c) DFT 
The FFT algorithm causes roundo[f errors. This has two sources: 
- the complex coefficients are represented in words of finite length: that 

is. they are quantized: 
performing additions and multiplications the partial results are 

rounded. 
Roundoff errors can be modelled by means of an additive white noise. 
The speed of analysis is determined by the speed of the FFT processor so 

that this can be a bottleneck in the system. 
When measuring stochastic signals another problem arises as well. 

It is well-known that the relative variance of the periodogram is approximately 
100~~ [1]. Thus, results have to be averaged in order to reduce variance; this 
naturally means a longer analysis time. 

Finally, let us briefly consider the problem ofresolution. The DFT gives 

points in the ~ points of the frequency axis. That is, the absolute resolution is 

limited bv DFT to ~. Thus the relative resolution is smaller at lower . T 
frequencies and greater at higher frequencies. These facts may often be 
disadvantageous. Let us mention here that the relative resolution can be 
equalized by frequency warping [3J, and the absolute resolution can be 
increased by band-selectable Fourier analysis [4J or Zoom FFT [5]. 
Let us sum up the DRFT errors: 

1. Inexact timing at sampling and non-ideal sampling; 
2. Limited upper frequency due to sampling; 
3. Limited dynamics due to truncation (limited record length); 
4. Leakage (because of limited record length); 
5. Picket fence effect (because of limited record length in the case of sine-type 

signals); 
6. Quantization distortion; 
7. Distortion due to nqnlinear overall characteristics of the quantizer; 
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8. Increased variance due to quantization; 
9. Roundoff errors (distortion, variance); 

10. Limited transform speed; 
11. 100% relative variance when measuring stochastic signals; 

12. Resolution limited to ~ = .~ ; 
13. Non-uniform relative resolution (uniform absolute resolution). 

It is obvious that reduction of certain errors may give rise to others. For 
instance, dithering reduces quantization errors, but increases variance. Greater 
N increases resolution but increases roundoff variance and transform time as 
well. So when designing spectrum analyzers the development engineer has to 
carefully choose a reasonable compromise between contradictory demands. 
The aim of the following chapters is to give general expressions and design 
formulas for some of the DRFT errors. 

4. Approximate computation of variance caused 
by quantization 

In this chapter we intend to use the model illustrated in Fig. 7. The 
quantization effect is modelled by an additive white noise uniform distribution 

on [ -~, ~J. Thus, 1 

q­
E{n}=O, Var (n)= 

, "( J 12 

Since the signal n(t) can be considered as a realization of a random process, its 
PDS estimator can be computed: 

Let CfJ T and Y'T denote the finite cosine and sine transforms respectively: • 

T 
2 

(6 T {n(t)}= S n(t) cos (2n:ft)dt , 
T 

-2 

T 
~ 

Y' T{ n(t)} = J n(t) sin (2n:ft) dt . 
T 

-'2 
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So 

(7) 

Since their expressions contain integration, and n(t) is a white noise, rh and /]2 

are normally distributed random variables. For any f = ~ , provided k =1= 0, it 

is easy to show that /] 1 and 1] 2 are independent, their mean is zero and their 
variance is equal, that is, T· Sn(f, T)j2 (see(7)). Thus, Sn(f, T) is of x~ 
distribution: 

Now for the discrete DRFT with parameters 

the expression of Sn(f, T) will be derived. Since n(t) is a white noise, Sn(f, T) is 
constant, consequently 

So 

The variance is approximately S;;(j, T) in the discrete case as well, since ;/1 and 
1] 2 are approximately normally distributed. 

Let us introduce now the following notations: 

and examine the EDS and PDS estimators. 
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Energy density spectrum estimator 

v? v? ? ? ') v ') v 

=(1+(2+1]1+;72+-(1;71 +-(21]2' 
'--v---' '--v---' 

E.U TI T . SnU: T) 

Here x(t) is deterministic, so 

Power density spectrum estimator 

Let us decompose x(t) into two components: 

x(t)=xd(t)+xs(t) , 

where d denotes the deterministic (periodic) part, and s denotes the stochastic 
part. 

For the stochastic part similar expressions can be derived as for n(t). ~ Is and ~2s 
are approximately normally distributed with zero mean and T· SxsC[' T)/2 

variance, provided that f = ; , k i= O. So the mean and variance of S xq(f, T): 

7 Periodic a Polytechnica EL 26/3--4 
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The relative variance is: 

With the shorthand 
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K 
Sx,(f, T) 

SxCr, T) , 

82 {S (I, T)1 [K q2T J2 
r xq' j = + 12N S AI, T) + 

+ 2(1- K) [ K + 12N~,~f, T)J . 

There are cases when we are interested only in the deterministic part: 

+ 

Discussion 

(8) 

From the above results it can be concluded that the mean of the estimator 
is changed by an additive constant which can be removed without difficulty; the 
variance is increased as well, but it depends on the signal to be analyzed. The 
variance can be reduced by reducing T. The variance can be approximated in 
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d(t 1 n(t) 

x (t 1 
----{ -t }------{ 

Fig. 9. The noise model of dithering 

extreme cases: if 

12NSxC{' T) ~ 1 

6NSx(f, T)' 
q2T 

1 + 6NSxC{' T)' 
K:::::;l 

The above results can be generalized for the case of dithering as well. If the 
signal is not approximately constant (e.g. the amplitude could be too small), the 
quantization noise and the dither are approximately independent, and a white 
noise model can be used with zero mean and variance 

In this case substituting (q2 + d2
) for q2 yields the correct results. 

Finally we should like to point out an important circumstance: all the 
derivations consider the case of a one-channel analyzer. For the case of cross 
Fourier analyzers with dependent or independent dithers similar results can be 
obtained. 

A numerical example 

A sine wave covered by noise is to be detected by spectral analysis. Let 

the variance of the noise be 0'2, the amplitude of the sine wave Up> ~, and the 

frequency fo. An FFT processor with an N = 210 point FFT can be used. Let us 
. compute the maximum value of q with which the existence of the sine wave can 

still be detected without averaging (not taking into account the other sources of 
variance). 

7* 
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Solution: 
The relationships for the sine wave and for the noise are: 

and 

respectively. The signal is detected if the SIN ratio with respect to Sxd(f, T) at fo 
is at least 3: 1, i.e. 

From (8): 

Using Up> (J the following inequalities can be obtained: 
3 

This means that a rather rough quantizer can fulfil the requirements. 

5. The analysis of Welch's method for the variance reduction 
in the estimation of Power Density Spectra 

To reduce biasing and variance of the periodogram Welch suggested a 
new method [6J based on averaging over modified periodograms. The 
modified periodogram is defined in the continuous case as follows: 

Uf, r)= ~ IX,(f, rW, 
e 

(9) 
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where 
.x; 

X'(j, r) = ff {x(t + r) . w(t)} = S x(t + r)w(t)e - j2rr!r dt , 
.x; 

and 
:::fJ 'X) 

T,,= S w2(t)dt= S W 2(f)df· 
-x; 

w(t) is called data or time window. It is a real, even and Fourier transformable 

function, with support! [ - ~ , ~J. The Fourier-transform of the time 

window is called spectral window: 

.Y {w(t)} = W(f) (l0) 

The sum of periodograms belonging to different segments is Welch's estimator: 

(11) 

Expected value of the estimator 

It is well-known that the periodogram is a biased estimator [1] with an 
expected value: 

x 

E{Sx(f)} = ~ f SAf-v)W 2(v) dv= ~ .Y{Rx(r)(w*wL}, (12) 
e e 

:x; 

where * denotes the convolutional integral. 
So the expre-sslon for the bias is: 

x 

E{Sx(f)-Sx(f)} = ~e f Rx('r)[1-(w*w)r]e-
j2rr

!tdr. (13) 

-x 

Its upper limit: 

-x 

1 The support [- ~ !..] means that the function is equal to zero outside the interval. 2 . 2 

(14) 
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Random processes have continuous spectra, and their covariance functions are 
generally absolute integrable, so the biasing may be whatever small, if the 
support of w( r) is large enough. For this reason, in the stochastic case it is not 
crucial how to choose a window. 

It is a different problem to estimate spectra of sine-type signals. There are 
two effects which make necessary to deal with the window problem: the spectral 
leakage and the picket-fence effect or amplitude uncertainty. The spectral 
leakage can be reduced by reducing the sidelobes of the window, and the 
amplitude uncertainty by reducing the ripple in the frequency interval 

HARRIS and NUTTALL formed some optimum windows [7, 9J for minimum 
sidelobes. These windows have the form of 

w(t)=rect - I Cke-'I"y'/ ( t) Ai .. 2" k 

T k= -,'.[ 
( 15) 

in time domain, and 
Ai 

W(f)=T- I Cksinc(fT-k) (16) 
k= -Ai 

in frequency domain, where 

for all k-s 

reet (x)~ { ~ 
elsewhere; 

sine(x)d.{reet(xJ}~ r~;~x :: :::' 
HARRIS minimized the maximum sidelobe for M = 2 and M = 3, but did not 
mind the large amplitude uncertainty. 

In the low frequency spectrum analyzer HP 3582 a so-called flat-top 
window with a wide dynamic range (90.5 dB) and little amplitude uncertainty 
(0.1 dB) was used [8]. We developed a new window for spectral estimation of 
sine-type signals. It has as good figures of merit as the flat-top window. The 
course of development was the following: 
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Writing W(f) in the form of (16), then 

W'(f) = L W(f - i/T)a; (17) 
; 

has the same form, but M increases depending on the number of summations. 
This operation makes the window wider, so the picket-fence effect decreases, 
and so does the dynamic range. Choosing the 4-sample Blackman-Harris 
window (M = 3) [7] as a basis and summing three windows, one per cent ripple 
of W'(f) has been achieved in the frequency range 

For improving the dynamic range of the obtained window the coefficients were 
modified by iteration with the aid of the gradient search technique. 
The window coefficients are: 

C3 =0.18 329 

This window is normalized, so that the peak power gain is 1: 

/
1 12 0 T W(O) =Ci5= 1. 

Variance versus overlap 

After having defined Welch's spectral estimator in (11), now its variance 
will be examined as a function of the overlap LIT. Welch [6J suggests an 
expression for the covariance between two modified periodograms belonging 
to different segments: 

(17) 
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The large dynamics, little picket-fence window (Lodllpf) 

a ITne time funclion 
b ITne tag plot of the spec trol window 
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b. 

Fig. 10. The large dynamics. little picket fence (LADLIPF) window: a) the time function: b) the log plot of the 
spectral window 

Here 

and 

;)(r,j)= ~e f W(f-g)W(f+g)eJ'21!9'dg= 

-x 

x 

= ~ ejZ 1!fr f w(r - t) w(t) e- j4rrft dt . 
T" 

( 18) 

-x 

From (18) two important conclusions can be drawn: 
1. qr, j) has a finite support in r for any f, because w(r) has a finite 

support as well: supp qr, f) = [ - T, TJ for any f; 
2. If f ll,tlls into the suppression range of the window then ;)2(r, j) < l. 
This implies that 
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Fig. 11. The C(r. fl function 

Applying (17) the variance is arrived at 

~ 1 K-l K-l 

Var {SxCf)} = 2: I I Cov {fAf, iJ1:), Ix(f, kL11:)} = 
K i=O k=O 

S2(f) K - 1 K - 1 

= ~2 i~Ok~OC[(k-i)L11:,fJ= 

= S;){) i=tK C(iJ1:, f) (1- ~). 

313 

(19) 

The measuring time Tm = T + KL11: is assumed to last much longer than the 
duration of one segment T. 
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Then 

(20) 

If ,1r--+O, this sum converges to the integral: 

(21) 

This is the minimal variance possible at a certain measuring time Tm. 
Now, let us introduce the measuring time utilization rate (MTUR), which 

is a function of ,1r and f: 

XJ 

lim Var {Sjf)} S C(u, f) du 
(,1 f) b, =-.1r,--~....::O _____ ;::::; _-_XJ::.::.. ___ _ 

1] r, = Var {Sx(f)} (22) 
L C(i,1r, f) ,1r 

i 

There are some MTUR plots versus ,1r for different windows in Fig. 12. These 
functions give the overlapping rate necessary for some windows. With 
decreasing ,1r (increasing overlap) 1] converges to 1, but the necessary 
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Fig. 12. Some measuring time utilization functions 
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computation time increases. When Llr increases, the correlation between the 
neighbouring segments decreases, and so does tl(Llr, f) as well. It is obvious 
from Fig. 11 that when C(r, f) bec;;.pmes approximately zero, the characteristic 
of t/(Llr, f) changes: it converges to a hyperbola. So for every window there is a 
compromise between measuring time utilization and data processing time. 

This compromise is about Llr/T = 0.5 for Hanning window, and Llr/T = 
=0.25 for that suggested above (Fig. 12). In the case Llr/T= 1 there is neither 
overlap nor gap between the neighbouring segments. Using LADLIPF 
window in this case, only 22% of the measured information is utilized. 

With 75% overlap (Llr/T = 0.25) this rate increases to 88%, so assuming 
the same variance it needs only 1/4 of the measuring time. This problem has a 
great importance when analyzing random signals with high selectivity and 
little variance, because such an analysis requires a pretty long measuring time. 

Summary 

Frequency analysis is common method for investigating physical phenomena or their signals. Many 
instruments based on FFT processors have been recently constructed to measure spectra. This paper is 
concerned with problems of the design and use of such tools and of developing some useful design formulas. 

After defining energy spectra. the importance of the Direct Fourier Transform (DRFT) method is 
pointed out and its error sources outlined. Some DRFT errors such as the variance due to input 
quantization, the picket fence effect and the variance of the DRFT spectral estimator, and their reduction is 
dealt with in detail. 
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