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1. Introduction 

Some practical aspects of the synthesis of one-loop single output sampled­
data control systems with constant parameters will be discussed. restricted to 
the input-output systems with feedback from the output signal. and not 
extending to the state-variable feedback. 

Sampled data control algorithms have an extended literature and great 
many design methods have been published such as parameter optimum 
control, dead beat controL minimum variance control etc. Usually. however, 
no indication is given on whether this multitude of procedures have a common 
basis or not, and what is the functioning mechanism the different results rely on. 
Whatever the designer's tooL an outstanding means of powerful design is a 
simple model illustrating the operational mechanism of the control loop and 
the effect of the factors influencing its operation with no complicated formulae. 
Without such a comprehensive model, the design with even the most 
sophisticated algorithm relies on trial, not less than does the fully intuitive one. 
and the published simulation results are more empirical recipes. 

The main problem is that the majority of up-to-date design methods 
require to specify"a priori"' criteria. Their reality or irreality can only be proved 
a posteriori. Thus, the design process is ·'trial and error"' just as in the so-called 
classic methods. \vith the only difference that criterion parameters and not 
directly the control system parameters are searched, by iteration. The 
properties of a continuous single-output linear control system appear the 
simplest from the open-loop frequency transfer function. i.e. from its Bode 
diagram. In discrete systems, the frequency transfer function contains the 
frequency in exponential form, making the Bode diagram too complicated 
to plot. Taking into consideration, however, that frequency transfer 
properties are, first of all, interesting in ranges below the out-off frequency, 
simple modifications may facilitate the handling of the discrete frequency 
function. 
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2. Low-frequency approximation of the pulse transfer 
functions of a discrete system 

The flow-chart of the discrete control system is seen in Fig. 1. w~(z) and 
w~ (z) are pulse transfer functions of the process and the controller, respectively. 
The process being normally continuous in time, w~(z) also involves the 
pulse transfer function of a zero-order hold. Pulse transfer functions of some 
simple processes -including also the holding element have been compiled 
in Table 1. 

Fig. I 

The pulse transfer function is the rational fraction of z, both its numerator 
and denominator can be decomposed into the product of functions (z - gJ 
where g is a real or a complex number. 

Provided the process contains no direct proportional channel, in the pulse 
transfer function of inertia processes the order of the numerator is less by one 
than the order of the denominator. The orders in cl system containing dead time 
differ by more. -

Let the frequency transfer function of the factor (z-g) be: 

(1 ) 

This function can be- approximated in the (j) ~ liT frequency range 
by a more convenient form for practical applications. Validity of the 
following approximations depending on the type of g can be proved (see in the 
Appendix 1): 

aT If g is a real number expressible as 

(2) 

then the low-frequency approximation of the pulse transfer function 

w*(-:-)=-:--e T.Tg=esT -e TiTg 
g - - (3) 

may be given in the form 

(4) 
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where ~ may be either positive or negative, T is the sampling interval. Ta is an 
additional time shift, - reflecting the sampling effect - empirically described 
as a function of Tq by the following expression: 

T T 

1 + g 

In Fig. 2 the quotient of absolute values of the exact (1) and the approximate (4) 
frequency transfer functions: 

and phase angle differences between cp(jw) and <ii(jw) obtained from Eqs 
(1) and (4) have been plotted for some TIT" values. In the frequency range 
w T < 1 the error in the absolute value is less than 5{)~, and the angle difference 
is of 1 or Y 

b) a special version of the former case is where g= 1 or Tq-+ x. 
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Then the low-frequency approximation of the function 

w;(z)=z-l or w;(jw) = eiwT -1 (6) 
becomes: 

(7) 

/hI'/ 
Iw'/ 1 r-""""""~ Tg/T = 0.25 

0.95 
Tg/T=025 

0.9 L--_~_--,-_~ __ 
Tg/T = 10. 

0.4 0.8 12 wT 0.4 0.8 12 wT 

Fig. 2 

c) If g is a complex number: 

(8) 

Since coefficients of w*(z) are real, it always occurs with its conjugated g. 
Let us have therefore: 

(9) 

The approximate frequency function: 

(10) 

Introducing the natural frequency Wo usual in the second-order 
expression of continuous signals and the damping coefficient ( 

[ ( 
w T )2 W T ] . }V;(jw)= 1- -- +2j(-- elWTd 

woT woT 
(11) 

where: 
LT 

Td=---== 
1 +1 e- aT 

(12) 
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Wo T=J(aTf +(bTf 
"_ aT . 
.~- , J (aT)2 + (b T)2 

(13) 

In case of wT < 1 and bT < 2, the approximation error is less than 10% in 
absolute value, the phase angle difference is 2° to 3°. Nevertheless, for bT-+TC 
the errors are increasing. 

Iw'l 
Iw'lf 

09 

092 '0= 1 

OB8L--_~_~---L~_ 

0.4 0.8 1.2 wT 

Fig. 3 

d) Special case of the complex zero 

bT=TC 
Now: 

g= _e- aT =-y 

W*(7)=7+'1' - .... I' 

In this case, expressions 

and .. 

are better approximations than Eqs (11) and (22). 
Ratio 

Iw:(jw)1 
11V:Uw)1 

(14) 

(15) 

(16) 

(17) 

computed for some y values are seen in Fig. 3 the absolute error is less than 12%, 
the angle difference is 0.2 to 0.4°. 
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According to these approximations, in the discrete system, the resulting 
frequency transfer function of the process and the holding in the range w T ~ 1 
differs only by an additional dead-time from the continuous frequency transfer 
function. 

Be for example the transfer function of a continuous process: 

1 +55 
W(5)= (1 +205) (l + 105) (1 +0.55) 

(18) 

In the discrete system the pulse transfer function with a sampling time T 
= 1, induding also the holding device: 

0.0144(z-0.819) (z+0.533) 
w*(z) = -----------­

(z-0.951) (z-0.905) (z-0.1353) 
(19) 

Replacing each factor by its low-frequency approximation Eqs (4 - 5) or 
(16-17) for wT<1 yields: 

_. . 0.0144(1-0.819)(1 +0.533) (1 +5jw) ejwTd 

w*Uw)= (1-0.951)(1-0.905) (1-0.1353) (1 +20jw) (1 + 10jw) (1 +0.5jw) 

(1+5jw) e-j0.491"'=w(jw)e-jO.49<o (20) 
(1 + 20jw) (1 + 10jw)(1 + 0.5jw) . 

The resultant additional dead-time being: 

1 1 1 
~ = T --== + ------co_=_ 

1+ 19 1+0.5331.08 1+..y0.951 

1 1 
r-:::-:-::-:: = - 0.4 9 T 

1 +~/0.135 

Thus, the additional dead-time is ~ ...... T/2. This is not accidental. If the 
frequency transfer function of a stable process without dead-time strongly 
damps frequencies Q ± w; 2Q + w etc., in comparison with the frequency band 
w T < 1 - that is, it has at least one pole in the range w T < 1 the high-frequency 
filtering effect of which is not compensated by the zeros - then in the low­
frequency range in the discrete system, the sampling effect may always be taken 
into account with an additional deadtime ~ = T /2, irrespective of the 
distribution of the other poles and zeros Q= 2n/T IS the sampling frequency. 
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This theorem is simple to understand from Fig. 4. Assume that the input 
signal of the hold devIce u*(t) originates from the sampling of a sine wave [u(t)] 

w,! 
--;;:; .... -

L 
a 

y(t) y* (I) 
y(jw,J y'(jW7J 

Fig. 4 

u'{jw/) = + U(jW7) 
udJw,] = TU*(jw,)e-JWIT/2 

y"(jw,) ~ U(jWIJ wB(jwtJe-jw / Tf2 

w8(jw,) :;: WB(jWI) e-Jw ,T/2 

Wit 

of frequency 0)1' where 0)1 < liT. 1 he component of frequency 0)1 of the pulse 
sequences u*(t) is. 

(21 ) 

The output signal of the hold device [UT] consists of the first harmonic 
UT(jO)I) and of higher frequency components. The phase shift of the first 
harmonic compared to signal U*(jO)I) is 0)1 T/2. If the frequency transfer 
function W B(jO) dam ps the higher frequency components, then the output 
signal practically becomes a sine wave of frequency 0) 1 where: 

Sampling the continuous signal y(t), the fundamental harmonic of the 
sampled signal y*(t) becomes: 
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hence: 
v*(jw 1 ) . . 

W*(J·W) = . = W (J·W )e - JW 1 T/2 
B *( .) B 1 U JW 1 

(22) 

The less the function wB(jw) damps the high-frequency components, the 
more follows the signal y the jumps of the signal UT. In the extreme case 
transients exciting by jumps of function UT vanish within one T sampling 
interval (Fig. 4). Then, pulse sequences y*(t) and u*(t) differ only by the time 
shift T, and the pulse transfer function becomes pure dead-time functIOn. 

In conclusion, the continuous process inserted in a discrete system may be 
described in the frequency range W T < 1 by its continuous transfer function and 
an additional time shift with a dead-time between Tj2 and T, depending on the 
locus of the poles. 

3. Some properties of the pulse transfer function of minimum 
phase continuous systems 

Let be the poles of a transfer function w(s) of a continuous system without 
dead-time in the left half-plane or in the origo, and its zeros in the left half­
plane. The absolute value of the poles and zeros is less than liT. Let be the 
order of numerator nz, and the order of the denominator n, where m < n. 

The pulse transfer function w*(z) including also the hold is rational 
function of z. Assume that it strongly damps the higher frequencies mentioned 
above, then its denominator consists of n factors type z - gi. gi is the exponentiB 1 
function of the i-th pole. In case of complex poles, two factors belonging to the 
conjugated poles may be reduced to one quadratic factor with real coefficients. 
The numerator always contains (n - 1) multiplying factors, nz of them being of 
type (z - 0";), where Vi is approximately an exponential function of the zeros in 
w(s), and the remained factors of number (n -I-m) are of type z+ri, where ri 
is positive real. These latter factors cause that the function w;(jw) differs only 
by a dead-time T 12 from the continuous frequency transfer function wUw) in 
the rang~ wT < 1, regardless of the m and n values. This will be illustrated by 
comparing the continuous transfer functions w(s), pulse transfer functions and 
their low-frequency approximations in the case of three processes, with a 
sampling interval T = 1. 

a) 
. , 1 

w"'(s) - ---------
1 - (1 + 1 Os) (1 + 7 s) (1 + s) 

O.OOl77(z + 0.193) (z + 2.79) 
wj(z) = -----------­

(z-0.905) (z-0.867) (z-0.368) 

(23) 

(24) 
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e- jwTd 

,Vi'U) = (1 + 1 Ojw)(1 + 7jw)(1 + jw) 

e- j0.49w 

(1 + 10jw) (1 + 7jw) (1 +jw) 
(25) 

~= T[0.76 + 0.25 -0.51-0.51-0.58J = -0.49T (26) 

The first two terms of the expression for ~ arise from the factors of the 
numerator, the others from those of the denominator. 

b) 
(1 + 2js) 

w2 (s)= (1 + lOs) (1 + 7s) (1 +s) (27) 

* 0.011(z-0.606) (z+0.784) 
w2 (z)= (28) 

(z-0.905) (z-0.867) (z-0.368) 

. 1+~w . • V~ UW ) = e - jO.49w (29) 
- (1+10jw)(1+7iw)(I+jw) 

~= T[0.54+0.57 -1.6J = -0.49T (30) 
c) 

(1 + 5s)(1 + 2s) 
w (s)- (31) 

3 - (1 + 10s) (1 + 7s)(1 +s) 

0.1139(z-0.819) (z-0.613) 
w!(z) = (3?) 

(z-0.905) (z-0.867) (z-0.368) -

_. . (1+5jw)(I+2.04jw) -'0-4. w'i'{jw) = e j .~ ill (33) 
3 (l+lOjw)(1+5jw)(I+jw) 

~=T(0.52+0.54-1.6)= -O.54T (34) 

In case of a), the numerator is of degree m=O. All three factors of the 
denominator offunction w*(z) have additional time shifts somewhat over 0.5T 
causing a total additional time shift of 1.6 T. w(s) having no zero, the numerator 
of w*(z) will contain two terms type z+y practically of no effect on the 
amplitude characteristic in the low-frequency range. Their resulting time shift 
of about 1.1 T partly compensates the time shift of the denominator, the 
resultant additional dead time is about T /2. 

In case of b), the zero in w(s) causes a factor (z -0.606) and a factor type (z 
+ y) to appear in the numerator of w*(z). This latter causes the resulting dead­
time to be again T /2 in the low-frequency range. 
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In case of c), m = 2. Therefore the numerator of w*(z) will contain factors 
corresponding to the two zeros in w(s). 

If the system has also a dead-time TD = dT, then the denominator ofw*(z) 
will contain a multiplier of form Zd. 

From case a) it is seen that the minimum phase system in plane s did not 
remain minimum phase type in plane z for the given sampling time, (one zero of 
w*(z) got outside the unit circle.) 

It is not too difficult to show (Appendix 2) that if the order of denominator 
and numerator of the continuous transfer function w(s) differ by n - m = 2, then 
in many practical cases a minimum phase system in the plane w(s) remains of 
minimum phase for any sampling time. For (n - In) = 3 or (n - m) = 4, if the 
absolute value of the poles and zeros of w(s) is less than liT, one zero of the 
system in z plane will get outside the unit circle. 

Thus, the case where the pulse transfer function of a stable process has no 
minimum-phase character is by no means exceptional in the z domain. 

Similar statements can be made on higher orders differences, but these are 
of little practical importance. 

4. Digital compensation 

Compensating means to form the frequency transfer properties of the 
control loop. Regardless of the actual design methods this will always be 
achieved by the transfer function of the controller inserting new poles and zeros 
into the open loop. In continuous system it will be made by the factors. 

1 +sT! 
w =---

A 1 +sT{ 

If liT! is chosen near to one of the poles of the process, H'A compensates 
the effect of this poles and instead of it inserts a new pole at liT; . The effect is as 
if the original pole were shifted to another frequency range. Shifting a pole to 
lower frequency range means a PI compensation. The opposite case is the PD 
compensation. An ideal PI or PD compensation shifts the pole to w-O or 
w- JJ, respectively. Inserting a new pole without a new zero or a new zero 
without a new pole means pure I or D compensation, respectively. 

The control system may always be considered as a filter transmitting at 
below the cut-off frequency of the open loop, and damping thereover. For 
stable, minimum phase continuous processes (in plane s) the phase angle of 
function w(jw) at the cut-off frequency theoretically cannot be less than -180: 
(practically -: 120c to -150C

). Since, sampling in the continuous process 
inserts a dead-time 0.5 T - 1 T into the system, which is further increased by 
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max. O.ST upon each single compensation PD, the cut-off frequency of a 
discrete system practically cannot be more than l/T [the possible maximum 
being about 1/27]. As a conclusion, the low-frequency relationship between 
functions w(s) and w*(z) (chapter 2) is valid throughout the transmitting band. 
On this basis, the discrete compensation algorithms are easy to survey. 

The discrete control algorithm inserts a pole-zero couple into the control 
system as terms type (z - g )/(z - g'). Such a term in the continuous system is 
equivalent to the effect of a definite pole-~ero couple, and may cause an 
additional phase shift. Depending on g and g', also terms having no equivalent 
pole or zero in the continuous system may be generated. These are special 
possibilities of the discrete compensation, affecting mainly the phase 
characteristic. Any discrete optimization method with no equivalent in the 
continuous control e.g. dead-beat controller makes use of this possibility. The· 
general algorithm 

has the following versions: 

7-g 
w;(z)=Ag----, , 

7-a 
- b 

a) If g and g' are positive real number, then 

Its low-frequency approximation 

where additional time shifts ~ and Td are given by Eq. (5). 

(35) 

(36) 

(37 ) 

PI compensation is generally applied in the range below the cut-off 
frequency. Then T{ > T! > T, hence g' > g, but both are near unity, therefore 
Td -;- ~ = 0, so discrete PI compensation will cause no additional dead-time. 

In an ideal PI algorithm T{-+x 

z_e-T!Tl z-g 
w~(z)=Ag---- =A --

z-l gz-1 
(38) 

(39 ) 

For T/T! ~ 1: 

(40) 
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The ideal PI member may oe produced also by parallelly connecting a 
proportional element and a digital integrator. According to the simplest 
discrete integration formula: 

[ 
T' 1 ] z-1 + T/1/ 

w~(z)=Ap 1+ --- =Ap----
1/ z-1 z-1 

(41) 

In case of ~ = Tl, and TdT ~ 1, it equals (38). It has no additional time 
shift, therefore even more accurate integration formulae are not better for this 
purpose. 

PD compensation is applied in the range about the cut-off frequency. 
Now, T; < Tl and usually T;;£ T. Therefore Td> 1".J or (1".J - Td) < 0, thus, the 
algorithm causes an additional time shift. PD algorithm requires the controller 
to produce dynamic gain. This may numerically be given e.g. as the quotient of 
initial and steady-state values of the step response. 

For a unit-step controller input 

yi(z)= z~ 1 

the output signal u* 

Hence: 

7 7 7_e- T1T ! 

u*(z)= ---w~(z)=Ag---- T'T' 
z-1 z-1 z-e !! 

1-e-T!T! 
u*(t=O)=A· u*(t->Xl)=A g' gl-e-

u*(t=O) l-e 
AJin =. = ---=;;--

u"'(t-> Xl) 1-e TIT! 

TITi 

F or a continuous PD algorithm 

(42) 

(43) 

For Tl > 1 and T{ > T, the two expressions are identical, but for T' < T 
they significantly differ. 

For ideal PD compensation the continuous algorithm yields the non­
realizable Adin = Xl. A discrete algorithm yields 
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or 
(44) 

equivalent in the low-frequency band to an ideal PD term with dead-time. The 
dynamic gain 

(45) 

In general, T/Tj < 1. Then 

and 
(T - ~)= T/2 (46) 

The dynamic gain enabling a continuous PD algorithm to achieve T' = T 
for a given T1, makes the discrete algorithm to act as if T' ~O, and as if a dead­
time T/2 would enter the system. In other words, the discrete PD algorithm 
exchanges the time-lag term of time constant T j for a term with dead-time T/2. 

Accordingly, the discrete algorithm of a controller able to insert one pole­
zero couple each on the low and high frequency ranges: 

includes five independent constants. With ideal PI and PD (g' = 0 and g'j = 1) 
terms the number of independent constants is reduced to three. 

1+{3 _-1 '{3 - :2 
. j.t. T ,"-

w"'(z)=A -
A 1-z- j 

This is the counterpart of the continuous controller PID. It is usual to 
define the constants as the integration and differentiation times ~ and TD of the 
continuous algorithm, but this is rather hampering than facilitating the design. 

b) g and g' are negative real numbers, 

g=-i or g'=-y' 

2 Periodica Polytechnica EL 25 1. 
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Now, an algorithm of the form 

or 

Z+'Y! 
w*(z)=A --

A 9 Z+y'l 

- , 1 + Y 1 '(T T') w"'(jw)=A __ eiw ,- ,. 
A 9 1 +}"l 

(47) 

acts in the low-frequency range as if inserting a pure time-shift into the system. 
For y 1> Y the time shift Td - Td is positive, thereby algorithm (~7) permits to 
somewhat reduce the dead-time in the system. In case of e.g. "; 1 = 0, connecting 
algorithm (44) and (47) in series yields the PD algorithm described by the 
following functions: 

7_e- T1T1 7 7_e- T1T, 

w~(z)=Ag - ---, =Ag-----
Z Z+Yl Z+y'l 

(48) 

(49) 

1 +", * (1 
Adin= -T'T l-e ! 1 

(50) 

where (T' -~) < T/2. Increasing the dynamic gain is seen to produce an 
equivalent ideal PD algorithm with an additional dead-time less than the T/2. 

Fig, 5 

But application of algorithm (49) is contraindicated by the possibility of a 
term type l/(z + y') to appear in the control signal u* involving a pulse sequence 
of alternating sign (Fig. 5). This pulse sequence through the zero-order hold 
excites the process with an oscillating signal at a frequency Qj2. Oscillation of 
the same frequency appears in the output signal of the continuous process. 
They are observable between sampling points. Therefore a PD algorithm 
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of this type may only be applied with a value i' causing no oscillation in the 
signal u*. 

c) A multiple PD compensation may involve also complex numbersg and 
g', giving with their conjugated a numerator or denominator of second order. If 
for an equivalent low'-frequency approximation cv < liT, these terms affect in 
the range cvT < 1, mainly the phase characteristic so the effect may be similar to 
case b) but again undesirable vibrations may occur. 

5. Synthesis of a sampled-data control system 

5.1. The role o.l the sampling time 

A fundamental characteristic of the synthesis of a discrete control system 
is the ratio of the sampling interval T and the cut-off frequency Wc-

a) If, WC ~ 1jT, the additional time shifts due to sampling are negligible. 
The synthesis has no special character. but may be made by the same methods 
as in continuous systems. In low-frequency approximations according to Eqs 
(14 -17) additional dead-times may first be neglected. Then exsists a mutual 
unambiguous relationship between the continuous and the discrete control 
algorithm, permitting to transform each to other. 

b) Special discrete synthesis methods e.g. controllers with minimum 
variance or dead-beat controller are justified if w, and IjT are of the same order 

1 1 
of magnitude, generally Wc ~ T : ? T ' F or the sake of an acceptable result, the 

- -' 

sampling interval has to be chosen corresponding to the cut-off frequency that 
can be achieved by the control equipment. Thus, the speed of the control loop is 
the function of the factors determining the cut-off frequency e.g. power of the 
controller equipment. its linear operation range etc, The control algorithm 
itself exerts only a secondary effect on it. Often the difference between an 
optimum and an intelligent SUboptimum control is of little importance. The 
optimum of discrete controls makes use of the special PD algorithm mentioned 
above (see point 4b), but these methods generaily result in a system much more 
sensitive to the variation of the parameters or the input signal than systems of a 
more conservative design. 

5.2. Stochastic-deierministic equiwlency 

Control systems are usually designed for deterministic or stationary 
stochastic signals. The two methods may be reduced to a common basis. From 
the theory of spectrum factorization it is known that the power density function 
of a stationary stochastic signal with a rational spectrum can be decomposed 
into the product of t\VO conjugated complex rational functions, one of which 
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has all poles in the continuous system in the left half-plane, in the discrete 
system inside the unit circle, and all zeros in the left half-plane or on the 
imaginary axis, or inside or on the unit circle, respectively. Thus, if the spectrum 
density of the stationary stochastic signal y(t) in the continuous and discrete 
system is rY}.(jw) and r:y(jw), respectively, then 

ryy(jw) = ~1(jW )11( -jw) 
or 

(51 ) 

Signals ~l (jw) and '1*(e jvlT
) may be interpreted as amplitude spectra of 

deterministic one-sided signals I](t) and 11*(t) thus, according to the Parseval 
theorem: 

If If If' var y = -? r rr dw = 11(jw )11( - jw) dw = - I]-(t) dt 
_TC -- 2TC 2TC 

Consequently, in the control system, the square time integral in the range 
o to x of any signal generated by the deterministic signall1(t) is identical to the 
variance of the signal generated by the stochastic signal y(t). In any case where 
the control circuit is designed for the optimum (suboptimum) of the variance of 
the error signal or the weighted variance sum of the error signal and control 
signal, it will also be optimum (suboptimum) for the deterministic signal Yf(t) in 
the sense of the square time integral. Also the inverse of the theorem is valid, 
therefore in designing the control or simulating its operation, the stochastic 
signal may be replaced by a deterministic one. This is often advantageous, 
permitting to better observe specialities of the system operation. 

5.3. Minimum settling time control 

In control system shown in Fig. 1, let the::: transform of the deterministic 
input signal in function of::: 1 

(52) 

C(:::-l) contains all zeros inside the unit circle, and C(:::-l) on or outside 
it. All zeros in the denominator are inside of the unit circle or at::: = 1. The pulse 
transfer function of the process that may include also dead-time ~: 

B(z - 1) 
wj;(::: l)=Z-k A(z- ) (53) 

k=I+~/T, thus, if the system contains no dead-time ~/T=O, k=1. 
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Let us find control algorithm W~(.Z-I) under the condition that error 
signal y; has to vanish as soon as possible, thus, output signal y* shoufd follow 
y; as truly as possible. 

Hence, y;(z -1) must be a polynomial of finite degree, expressed in the 
form: 

Here h(z - 1) is a polynomial with still undefined order and coefficients. y; 
may be expressed by the input signal and the error pulse transfer function 

z-ac(z 1)C"(Z-I) 
y;(z-I)=Ya(z-l)w;(z-I)= D(Z-I) w;(z I). 

Hence: 
D(-- 1) 

*( 1)__ .. 11(-:-1) w; ::: _ 
C(::: I) 

(55) 

The form (54) of signal y; ensures the stability of w; . 
A realizable algorithm W~(:::-I) cannot make dead-time term :::-k of the 

discrete system disappear, therefore this term has to appear in the transfer 
function of the closed system. And since in a finite time the output signal takes 
the value J';, also the denominator of y*(z - I) contains the polynomial D(z - I). 

Hence W*(Z-I) may be written as: 

k pi::: I) 

C(:::-I) 

Here pi::: - 1) is a polynomial of indefinite order and coefficients. 
From the relationship between w* and w;: 

D(z 1) k pI::: I) 
1- h(:::-I)=::: 

C(::: ) C(.: I) 

hence: 

(56 ) 

(57) 

Comparing coefficients of powers of::: 1 on either side yields a definite 
system of equations for the parameters hand p minimally required. 

The pulse transfer function of the controller: 

(58 ) 
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This equation includes also the following cases: 
a) Minimum variance control 
All zeros of C(.:-I) and D(::: 1) are inside the unit circle. C(z ,1)= 

C(.: 1) and C (::: 1) = 1. Error signal J'; disappears latest at time k + 1. Within 
this interval, error values appear by physical necessity dead-time, therefore the 
square integral of y;(t) Of, according to the stochastic-deterministic 
equivalency, variance of the corresponding stochastic signal is minimum. 

b) Signal y;(z 1) is::: transform of deterministic signals l(t); 1· t; 1· t 2
. 

Then w~(:::- 1) is the minimum-type controller. 
c) For BI A = 1, the control is of pure dead-time dead-beat or minimum 

variance control. 
In spite of the different mathematical apparata describing the different 

controls, they are based on the same compensation principle. 
The algorithm (58) is, however, seldom applicable in original form. w~ 

contains the inverse ofw~(::: 1). If the process is no minimum phased in plane z, 
due either to zeros, or poles of w~(z - 1), this compensation is unacceptable, 
similarly is not desirable if polynomial B contains factors type 1 + yz - 1 because 
these in the denominator offunction w~(z) lead to oscillation between sampling 
points in the continuous process. All these problems may be eliminated by 
suboptimum strategy, consisting essentially in permitting unstable poles of 
w~(z) in function w;(z 1), and unstable or oscillating zeros in function w*(z 1) 
to appear. Now, Eq. (57) becomes: 

where polynomial R(: - i) contains the unstable or oscillating zeros, and L(z 1) 

the unstable poles of w~(z). This strategy increases the settling time compared 
to (58). 

Compensation mechanism of various design methods is illustrated by the 
following example. 

Example. 
Transfer function of the continuous process: 

1 
W(5) = -----­

(1 + 45) (1 + 25 ) 

The asymptotic Bode diagram is seen in Fig. 6. 

(60) 

Let us consider the algorithm of the minimum settling time control. Let 
the input signal be the determimstic step function. 

1-: 1 
(61 ) 
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(62) 

In the following three cases will be compared. 

IgJw; UwJi 

Oi 

Fig. 6 

a) The minimum tyoe dead-beat control is, according to Eqs (57) and 
(58): 

(63) 

.( -1 20.45(1 0.779z- 1 )(1-0.607z- 1
) (z-0.779) (z-0.607) 

w'" z ) = = 2045---------.:.. 
A (1-z- 1 )(1+0.779z- 1 ) • (z-1)(z+0.779) 

(64) 

Its equivalent low-frequency approximation: 

_*(.) (1+4jw) (1+2jw) -jOw 
WA)W = . e 

)W 
(65) 

The compensation algorithm consists of a PI and a PD part. PI part 
transfers pole at z=0.779, to Z= 1. The low-frequency effect of the PD 

1 
algorithm is as if it would completely cancel the pole ofthe process at s = - -, 

2 
without additional dead-time. The pulse transfer function of the open loop and 
its low-frequency approximation 

1 
w;(z)=w~w~ = -­

z-l 
(66) 

(67) 
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Thus, the cut-off frequency is Wc = 1, the phase margin <Pc = 61.35°. The 
control signal: 

(z-0.779) (z-0.607) 
u*(z) = v* w* = 20.45 --:------c---

.r A (z-1) (z+0.779) 

Time functions y and u are seen in Fig. 7 (a curves). 

(68) 

By the end of the first sampling period, the output sIgnal reaches its 
steady-state value, but upon the effect of the very oscillating signal UT arising 
from signal u* it is strongly rippled between the sampling points. The input 
signal UT of the process also contains an oscillation of frequency Q/2 damping 
with a time constant Tl = 4, u having its maximum value at t = T, u(T) = 23.82. 
Oscillation of signal u and y makes this form of the algorithm practically 
useless. 

In order to suppress oscillation of the control signal we apply the 
suboptimal Eq. (59) 

L(Z-l)= 1 +0.779z 1 
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'( ) 1 (z-0,779) (z-0.607) 
w~ z = 1 .5 -------­

(z-l) (z+0.438) 

-*(.) 0695 (1+4jw)(1+2jw) -0147', 
WA JW = . . e . JW 

JW 

" 

* 
0.562(z + 0.779) 

w (z) = ------
x (z-1) (z+0.4379) 

0.695 '064 
~V;(jW) = -. -e-J· W 

JW 

25 

(70) 

(71) 

(72) 

(73) 

The cut-off frequency wc"",0.695; lPc=64.42°. From Eq. (70) it is obvious 
that the control algorithm again consists of an ideal PI algorithm and of PD 
algorithm shifting pole z = 0.607 to z = - 0.437. 

It differs from Eq. (64) in the PD part having an additional dead-time 
0.174 T. This increases the additional dead-time of the open loop to 0.65 T. The 
about equal phase margin leads to a cut-off frequency lower than in case a. The 
error disappears during 27, without oscillating component in signals UT and y. 

(z-0.779) (z-0.607) 
u*(z)= 11.5 ------­

(z -l)z 
(74) 

The maximum u value is u(T)= 11.5. Values y and UT are seen in curves b 
of Fig. 7. 

c) The most conventional solution complying with classic principles is a 
compensation PO introducing no new pole on the negative axis of plane z. 
Thereby it increases, however, the additional time shift due to the 
compensation PD, so that in order to maintain the about 60: phase margin, the 
cut-offfrequency has to be reduced even compared to case b, to about Wc = 0.55. 

. 6 (z-0.779) (z-0.607) 
w~(z) = .32 , 

(z -1)z 
(75) 

(z+0.779) 
w;(z) = 0.309 ; 

(z -l)z 
-, 0.55 093' w"'(jw) = -.-e- . JW 

JW 
(76) 

(77) 
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*(7) = . z(z-l) wr - -::-, ------
z- - 0.691z + 0.241 

(78) 

Output and input signals of the process y and UT in the three cases have 
been compared in Fig. 7. 

The optimal algorithm is practically useless because of the oscillations of 
the control and output signals. The other two suboptimal algorithms little 
differ from each other. From the aspect of signal y, case b) is the more 
favourable, but the peak of the control signal is about double of that in case c). 
Comparison with identical UTmax rather than identical sampling times would 
show a possibility to accelerate the case c) by reducing the sampling time. 

Then with unaltered curve shape in the initial section, the difference 
between cases band c should be reduced. Since case c is little sensitive to 
parameter changes, practically this. solution is at least equivalent to case b. 
Were the input signal an exponentially decreasing function with time constant 
~ rather than a step function, factor (z - 1) would be replaced by (z - e - TiT a) in 
Eqs (61)to (78). For T/~ ~ 1, e- TiTa "-' 1 in the beginning there is little change 
in signals y and U compared to the former case. The only difference is that the 
signals y and U do not reach a constant value after the transient interval but are 
damping exponentially with time constant ~. In compliance with the 
stochastic-deterministic equivalency, the optimal algorithm is at the same time 
a minimum variance control for the exponentially correlated input signal. Due 
not only to excessive parameter sensitivity but also to undesired oscillation in 
signal y and mainly UT the optimal algorithm is unapplicable. 

Otherwise, comparing optimal and suboptimal algorithm on the basis of 
equal control signal amplitudes rather than equal sampling times practically 
the same effect may be reached also by the vibrationless suboptimal algorithm, 
hence essentially, the minimum variance control has no advantage. 

It is interesting that this phenomenon has been described in the literature 
that the minimum variance control fails in case of deterministic input signals. 
As a matter of fact, it fails also in case of stochastic signals input but in this case 
from the stochastic UT and y signals are difficult to separate oscillations arising 
from the improper operation of the system. In this respect, most of the 
published results have been obtained with digital simulations where the 
process is replaced by a discrete model, so the oscillation seen in Fig. 7 
cannot even be recorded at the sampling points. Curves recorded on a 
hybrid model are seen in Fig. 8. The strong pulsation is markedly seen cm 
alternative a. 

11 (he degrees of the denominator and the numerator 01 tne pro~ess pulse 
transfer function differ by 3 or 4, the oscillation of the minimum variance 
control becomes unstable. Thereby only SUboptimum alternatives may be 
taken into account. This fact, supported also by the experiences of the example 
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above, means that the minimum variance algorithm is practically most seldom 
of use. But practical importance has the method minimizing the weighed sum 
of the variances of the output and control signals. 

u(t) y(t) 
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Appendix 1 

Let us divide Eq. (3) by (1 - g) and replace both numerator and 
denominator by their Taylor series. Denoting a = l/Tg : 
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w;(z)z-g (s+a)T+ (s2+a2)T2/2 + (S3+ a3)T3/6 + 

aT- aT2/2+a3T 3/6 + ... = 
l-g l-g 

.(s+a)T1 + (s-a)T2 + (s2-as+a2)T2/6 + 

aT 1-aT/2 + a2T2/6 + ... 

s+a f(s;a) f(s;a) 
=- = (l+sT) =(1+sTg)F(s;a) 

a f(O; a) 9 f(O; a) 

f(s; a) is the convergent power series of variable s, and f(O; a) is its value at s 
= O. The frequency transfer function is obtained by replacing s = jw. The 
correction term Ffs; a) primarily affects the phase shift in the frequency range 
w T < 1 therefore as a first approximation, it may be approximated by a pure 
shift term expjwI:t yielding Eq. (4), I:t being an empirical value. 

Appendix 2 

Let us consider the behaviour of discrete frequency transfer function 
w* (jw) at frequency n/T. Here z = -1, hence w*(jw) is obtained from function 
w*(z) by substituting z = -1. Sampling a continuous signal Yin offrequency Q/2 
yields a pulse series of constant amplitude and alternating sign [u*], 
transformed by the holding element to a square wave UT' The square wave 
consists of components of frequencies n/T; 3n/T etc. Since the transfer function 
w(w) of the process filters out the higher harmonics, the output signal y of the 
process is identical with the component of frequency Q/2. Sampling this output 
sine wave yields a pulse sequence y* with alternating sign in phase or in counter 
phase to pulse sequence u*. Hence w*(z = -1) = w*(Q/2) is either positive or 
negative. If the continuous transfer function w(jw) has two uncompensated 
poles (n - m = 2) and at frequency Q/2, the phase angle is near to but above 
-180° then according to Fig. 9a, y* is counter-phased to u* so w*( -1) is 
negative. In this case, numerator of function w*(z) contains a single factor type 
z+y. 

In addition, both the numerator and the denominator include an even 
number offactors, all being negative. Thus, w*(z) = -1 can only be negative if 
factor type z+/' is negative at z = -1, i.e. y < 1. Thus, all zeros of the numerator 
of w*(z) are inside the unit circle. On the other hand, for n - m = 3 or n - m = 4, if 
function w(Q/2) causes a phase shift normally between -180c and - 360c then 
u* and y* are in phase [Fig. 9b], w*(z = -1) is positive. This is possible if one 
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from among factors of shape Z+Yi in the numerator of w(z) is posIttve at 
Z = - 1. Hence Yi> 1, thus, one zero of the numerator is outside the unit 
circle. 

Summary 

Based on the analysis of the pulse-transfer functions of continuous linear processes a general purpose 
design method is presented to give optimal or suboptimal DDC algorithms for deterministic and stochastic 
systems. The method eliminates the intersampling oscillation. It is valid for nonminimum phase and 
nonstable processes. as well. 
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